6,683 research outputs found

    A Data-Driven Edge-Preserving D-bar Method for Electrical Impedance Tomography

    Full text link
    In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to noise, and requires the use of regularized solution methods, of which D-bar is the only proven method. The resulting EIT images have low spatial resolution due to smoothing caused by low-pass filtered regularization. In many applications, such as medical imaging, it is known \emph{a priori} that the target contains sharp features such as organ boundaries, as well as approximate ranges for realistic conductivity values. In this paper, we use this information in a new edge-preserving EIT algorithm, based on the original D-bar method coupled with a deblurring flow stopped at a minimal data discrepancy. The method makes heavy use of a novel data fidelity term based on the so-called {\em CGO sinogram}. This nonlinear data step provides superior robustness over traditional EIT data formats such as current-to-voltage matrices or Dirichlet-to-Neumann operators, for commonly used current patterns.Comment: 24 pages, 11 figure

    A Hybrid Segmentation and D-bar Method for Electrical Impedance Tomography

    Get PDF
    The Regularized D-bar method for Electrical Impedance Tomography provides a rigorous mathematical approach for solving the full nonlinear inverse problem directly, i.e. without iterations. It is based on a low-pass filtering in the (nonlinear) frequency domain. However, the resulting D-bar reconstructions are inherently smoothed leading to a loss of edge distinction. In this paper, a novel approach that combines the rigor of the D-bar approach with the edge-preserving nature of Total Variation regularization is presented. The method also includes a data-driven contrast adjustment technique guided by the key functions (CGO solutions) of the D-bar method. The new TV-Enhanced D-bar Method produces reconstructions with sharper edges and improved contrast while still solving the full nonlinear problem. This is achieved by using the TV-induced edges to increase the truncation radius of the scattering data in the nonlinear frequency domain thereby increasing the radius of the low pass filter. The algorithm is tested on numerically simulated noisy EIT data and demonstrates significant improvements in edge preservation and contrast which can be highly valuable for absolute EIT imaging

    Speckle Reduction with Attenuation Compensation for Skin OCT Images Enhancement

    Get PDF
    The enhancement of skin image in optical coherence tomography (OCT) imaging can help dermatologists to investigate tissue layers more accurately, hence the more efficient diagnosis. In this paper, we propose an image enhancement technique including speckle reduction, attenuation compensation and cleaning to improve the quality of OCT skin images. A weighted median filter is designed to reduce the level of speckle noise while preserving the contrast. A novel border detection technique is designed to outline the main skin layers, stratum corneum, epidermis and dermis. A model of the light attenuation is then used to estimate the absorption coefficient of epidermis and dermis layers and compensate the brightness of the structures at deeper levels. The undesired part of the image is removed using a simple cleaning algorithm. The performance of the algorithm has been evaluated visually and numerically using the commonly used no-reference quality metrics. The results shows an improvement in the quality of the images. Keywords: Optical coherence tomography (OCT), Skin, Image enhancement, Speckle reduction, Attenuation compensation

    An Improved Approach for Contrast Enhancement of Spinal Cord Images based on Multiscale Retinex Algorithm

    Full text link
    This paper presents a new approach for contrast enhancement of spinal cord medical images based on multirate scheme incorporated into multiscale retinex algorithm. The proposed work here uses HSV color space, since HSV color space separates color details from intensity. The enhancement of medical image is achieved by down sampling the original image into five versions, namely, tiny, small, medium, fine, and normal scale. This is due to the fact that the each versions of the image when independently enhanced and reconstructed results in enormous improvement in the visual quality. Further, the contrast stretching and MultiScale Retinex (MSR) techniques are exploited in order to enhance each of the scaled version of the image. Finally, the enhanced image is obtained by combining each of these scales in an efficient way to obtain the composite enhanced image. The efficiency of the proposed algorithm is validated by using a wavelet energy metric in the wavelet domain. Reconstructed image using proposed method highlights the details (edges and tissues), reduces image noise (Gaussian and Speckle) and improves the overall contrast. The proposed algorithm also enhances sharp edges of the tissue surrounding the spinal cord regions which is useful for diagnosis of spinal cord lesions. Elaborated experiments are conducted on several medical images and results presented show that the enhanced medical pictures are of good quality and is found to be better compared with other researcher methods.Comment: 13 pages, 6 figures, International Journal of Imaging and Robotics. arXiv admin note: text overlap with arXiv:1406.571

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Wavelet-based denoising for 3D OCT images

    Get PDF
    Optical coherence tomography produces high resolution medical images based on spatial and temporal coherence of the optical waves backscattered from the scanned tissue. However, the same coherence introduces speckle noise as well; this degrades the quality of acquired images. In this paper we propose a technique for noise reduction of 3D OCT images, where the 3D volume is considered as a sequence of 2D images, i.e., 2D slices in depth-lateral projection plane. In the proposed method we first perform recursive temporal filtering through the estimated motion trajectory between the 2D slices using noise-robust motion estimation/compensation scheme previously proposed for video denoising. The temporal filtering scheme reduces the noise level and adapts the motion compensation on it. Subsequently, we apply a spatial filter for speckle reduction in order to remove the remainder of noise in the 2D slices. In this scheme the spatial (2D) speckle-nature of noise in OCT is modeled and used for spatially adaptive denoising. Both the temporal and the spatial filter are wavelet-based techniques, where for the temporal filter two resolution scales are used and for the spatial one four resolution scales. The evaluation of the proposed denoising approach is done on demodulated 3D OCT images on different sources and of different resolution. For optimizing the parameters for best denoising performance fantom OCT images were used. The denoising performance of the proposed method was measured in terms of SNR, edge sharpness preservation and contrast-to-noise ratio. A comparison was made to the state-of-the-art methods for noise reduction in 2D OCT images, where the proposed approach showed to be advantageous in terms of both objective and subjective quality measures
    • …
    corecore