2,197 research outputs found

    Dynamic Base Station Repositioning to Improve Spectral Efficiency of Drone Small Cells

    Full text link
    With recent advancements in drone technology, researchers are now considering the possibility of deploying small cells served by base stations mounted on flying drones. A major advantage of such drone small cells is that the operators can quickly provide cellular services in areas of urgent demand without having to pre-install any infrastructure. Since the base station is attached to the drone, technically it is feasible for the base station to dynamic reposition itself in response to the changing locations of users for reducing the communication distance, decreasing the probability of signal blocking, and ultimately increasing the spectral efficiency. In this paper, we first propose distributed algorithms for autonomous control of drone movements, and then model and analyse the spectral efficiency performance of a drone small cell to shed new light on the fundamental benefits of dynamic repositioning. We show that, with dynamic repositioning, the spectral efficiency of drone small cells can be increased by nearly 100\% for realistic drone speed, height, and user traffic model and without incurring any major increase in drone energy consumption.Comment: Accepted at IEEE WoWMoM 2017 - 9 pages, 2 tables, 4 figure

    Distributed drone base station positioning for emergency cellular networks using reinforcement learning

    Get PDF
    Due to the unpredictability of natural disasters, whenever a catastrophe happens, it is vital that not only emergency rescue teams are prepared, but also that there is a functional communication network infrastructure. Hence, in order to prevent additional losses of human lives, it is crucial that network operators are able to deploy an emergency infrastructure as fast as possible. In this sense, the deployment of an intelligent, mobile, and adaptable network, through the usage of drones—unmanned aerial vehicles—is being considered as one possible alternative for emergency situations. In this paper, an intelligent solution based on reinforcement learning is proposed in order to find the best position of multiple drone small cells (DSCs) in an emergency scenario. The proposed solution’s main goal is to maximize the amount of users covered by the system, while drones are limited by both backhaul and radio access network constraints. Results show that the proposed Q-learning solution largely outperforms all other approaches with respect to all metrics considered. Hence, intelligent DSCs are considered a good alternative in order to enable the rapid and efficient deployment of an emergency communication network

    An Overview of Drone Energy Consumption Factors and Models

    Full text link
    At present, there is a growing demand for drones with diverse capabilities that can be used in both civilian and military applications, and this topic is receiving increasing attention. When it comes to drone operations, the amount of energy they consume is a determining factor in their ability to achieve their full potential. According to this, it appears that it is necessary to identify the factors affecting the energy consumption of the unmanned air vehicle (UAV) during the mission process, as well as examine the general factors that influence the consumption of energy. This chapter aims to provide an overview of the current state of research in the area of UAV energy consumption and provide general categorizations of factors affecting UAV's energy consumption as well as an investigation of different energy models

    Multi-Drone-Cell 3D Trajectory Planning and Resource Allocation for Drone-Assisted Radio Access Networks

    Get PDF
    Equipped with communication modules, drones can perform as drone-cells (DCs) that provide on-demand communication services to users in various scenarios, such as traffic monitoring, Internet of things (IoT) data collections, and temporal communication provisioning. As the aerial relay nodes between terrestrial users and base stations (BSs), DCs are leveraged to extend wireless connections for uncovered users of radio access networks (RAN), which forms the drone-assisted RAN (DA-RAN). In DA-RAN, the communication coverage, quality-of-service (QoS) performance and deployment flexibility can be improved due to the line-of-sight DC-to-ground (D2G) wireless links and the dynamic deployment capabilities of DCs. Considering the special mobility pattern, channel model, energy consumption, and other features of DCs, it is essential yet challenging to design the flying trajectories and resource allocation schemes for DA-RAN. In specific, given the emerging D2G communication models and dynamic deployment capability of DCs, new DC deployment strategies are required by DA-RAN. Moreover, to exploit the fully controlled mobility of DCs and promote the user fairness, the flying trajectories of DCs and the D2G communications must be jointly optimized. Further, to serve the high-mobility users (e.g. vehicular users) whose mobility patterns are hard to be modeled, both the trajectory planning and resource allocation schemes for DA-RAN should be re-designed to adapt to the variations of terrestrial traffic. To address the above challenges, in this thesis, we propose a DA-RAN architecture in which multiple DCs are leveraged to relay data between BSs and terrestrial users. Based on the theoretical analyses of the D2G communication, DC energy consumption, and DC mobility features, the deployment, trajectory planning and communication resource allocation of multiple DCs are jointly investigated for both quasi-static and high-mobility users. We first analyze the communication coverage, drone-to-BS (D2B) backhaul link quality, and optimal flying height of the DC according to the state-of-the-art drone-to-user (D2U) and D2B channel models. We then formulate the multi-DC three-dimensional (3D) deployment problem with the objective of maximizing the ratio of effectively covered users while guaranteeing D2B link qualities. To solve the problem, a per-drone iterated particle swarm optimization (DI-PSO) algorithm is proposed, which prevents the large particle searching space and the high violating probability of constraints existing in the pure PSO based algorithm. Simulations show that the DI-PSO algorithm can achieve higher coverage ratio with less complexity comparing to the pure PSO based algorithm. Secondly, to improve overall network performance and the fairness among edge and central users, we design 3D trajectories for multiple DCs in DA-RAN. The multi-DC 3D trajectory planning and scheduling is formulated as a mixed integer non-linear programming (MINLP) problem with the objective of maximizing the average D2U throughput. To address the non-convexity and NP-hardness of the MINLP problem due to the 3D trajectory, we first decouple the MINLP problem into multiple integer linear programming and quasi-convex sub-problems in which user association, D2U communication scheduling, horizontal trajectories and flying heights of DBSs are respectively optimized. Then, we design a multi-DC 3D trajectory planning and scheduling algorithm to solve the sub-problems iteratively based on the block coordinate descent (BCD) method. A k-means-based initial trajectory generation scheme and a search-based start slot scheduling scheme are also designed to improve network performance and control mutual interference between DCs, respectively. Compared with the static DBS deployment, the proposed trajectory planning scheme can achieve much lower average value and standard deviation of D2U pathloss, which indicate the improvements of network throughput and user fairness. Thirdly, considering the highly dynamic and uncertain environment composed by high-mobility users, we propose a hierarchical deep reinforcement learning (DRL) based multi-DC trajectory planning and resource allocation (HDRLTPRA) scheme for high-mobility users. The objective is to maximize the accumulative network throughput while satisfying user fairness, DC power consumption, and DC-to-ground link quality constraints. To address the high uncertainties of environment, we decouple the multi-DC TPRA problem into two hierarchical sub-problems, i.e., the higher-level global trajectory planning sub-problem and the lower-level local TPRA sub-problem. First, the global trajectory planning sub-problem is to address trajectory planning for multiple DCs in the RAN over a long time period. To solve the sub-problem, we propose a multi-agent DRL based global trajectory planning (MARL-GTP) algorithm in which the non-stationary state space caused by multi-DC environment is addressed by the multi-agent fingerprint technique. Second, based on the global trajectory planning results, the local TPRA (LTPRA) sub-problem is investigated independently for each DC to control the movement and transmit power allocation based on the real-time user traffic variations. A deep deterministic policy gradient based LTPRA (DDPG-LTPRA) algorithm is then proposed to solve the LTPRA sub-problem. With the two algorithms addressing both sub-problems at different decision granularities, the multi-DC TPRA problem can be resolved by the HDRLTPRA scheme. Simulation results show that 40% network throughput improvement can be achieved by the proposed HDRLTPRA scheme over the non-learning-based TPRA scheme. In summary, we have investigated the multi-DC 3D deployment, trajectory planning and communication resource allocation in DA-RAN considering different user mobility patterns in this thesis. The proposed schemes and theoretical results should provide useful guidelines for future research in DC trajectory planning, resource allocation, as well as the real deployment of DCs in complex environments with diversified users
    • …
    corecore