40 research outputs found

    Magnetically steerable catheters: State of the art review

    Get PDF
    Magnetically steerable catheters (MSCs) have caught the interest of researchers due to their various potential uses in clinical applications, for example, minimally invasive surgery. Many significant advances in the design, implementation and analysis of MSCs have been accomplished in the last decade. This review concentrates on the configurations of current MSCs with an in depth look at control of the device and the specific workspace. This review also evaluates MSCs and references possible future system designs and difficulties. The concept of magnetic manipulation is briefly presented. Then, by category, the MSC is introduced. Following that, a discussion of future works and challenges of the review systems is provided. The conclusions are finally addressed

    Hypertonic saline solution for signal transmission and steering in MRI-guided intravascular catheterisation

    Get PDF
    © Springer International Publishing AG, part of Springer Nature 2018. Use of traditional low-impedance sensor leads is highly undesirable in intravascular catheters to be used with MRI guidance; thermal safety and quality of imaging are particularly impacted by these components. In this paper, we are showing that hypertonic saline solution, a high-impedance body-like fluid, could be a compatible and effective signal transmission medium when used in MRI-compatible catheters. We also propose a simple type of catheter design that can be steered hydraulically using the same saline solution. Integration of hydraulic steering is not required for MRI-compatibility; however efficient design can bring advantages in terms of structural simplicity and miniaturisation. Manufacturing of proof-of-concept prototypes using 3D printing is underway

    The Integration of Robotic Arm and Vision System With Magnetic Tractor Beam Control for Precision Catheter Manipulation in Medical Procedures

    Get PDF
    This study addresses the challenges of traditional catheterization techniques by integrating UFACTORY's uArm Swift Pro robotic arm with the OpenMV camera module, enhanced by the magnetic tractor beam (MTB) method. The goal is to improve precision, stability, and minimally invasive operation in catheter-based medical procedures. The uArm Swift Pro offers a robust and adaptable platform, while the OpenMV camera provides accurate real-time tracking of catheter tips. To evaluate the system's effectiveness, experimental models replicating realistic anatomical scenarios were created using advanced three-dimensional (3D) printing techniques. Preliminary results demonstrate that this integrated system enhances the accuracy and safety of catheterization, suggesting its potential to advance medical robotics and contribute to more patient-friendly interventions. This work underscores the potential for robotics to revolutionize medical procedures, ensuring better outcomes and reduced patient discomfort

    Modeling and Control of Steerable Ablation Catheters

    Get PDF
    Catheters are long, flexible tubes that are extensively used in vascular and cardiac interventions, e.g., cardiac ablation, coronary angiography and mitral valve annuloplasty. Catheter-based cardiac ablation is a well-accepted treatment for atrial fibrillation, a common type of cardiac arrhythmia. During this procedure, a steerable ablation catheter is guided through the vasculature to the left atrium to correct the signal pathways inside the heart and restore normal heart rhythm. The outcome of the ablation procedure depends mainly on the correct positioning of the catheter tip at the target location inside the heart and also on maintaining a consistent contact between the catheter tip and cardiac tissue. In the presence of cardiac and respiratory motions, achieving these goals during the ablation procedure is very challenging without proper 3D visualization, dexterous control of the flexible catheter and an estimate of the catheter tip/tissue contact force. This research project provides the required basis for developing a robotics-assisted catheter manipulation system with contact force control for use in cardiac ablation procedures. The behavior of the catheter is studied in free space as well in contact with the environment to develop mathematical models of the catheter tip that are well suited for developing control systems. The validity of the proposed modeling approaches and the performance of the suggested control techniques are evaluated experimentally. As the first step, the static force-deflection relationship for ablation catheters is described with a large-deflection beam model and an optimized pseudo-rigid-body 3R model. The proposed static model is then used in developing a control system for controlling the contact force when the catheter tip is interacting with a static environment. Our studies also showed that it is possible to estimate the tip/tissue contact force by analyzing the shape of the catheter without installing a force sensor on the catheter. During cardiac ablation, the catheter tip is in contact with a relatively fast moving environment (cardiac tissue). Robotic manipulation of the catheter has the potential to improve the quality of contact between the catheter tip and cardiac tissue. To this end, the frequency response of the catheter is investigated and a control technique is proposed to compensate for the cardiac motion and to maintain a constant tip/tissue contact force. Our study on developing a motion compensated robotics-assisted catheter manipulation system suggests that redesigning the actuation mechanism of current ablation catheters would provide a major improvement in using these catheters in robotics-assisted cardiac ablation procedures
    corecore