7,989 research outputs found

    Cubic graphs with large circumference deficit

    Full text link
    The circumference c(G)c(G) of a graph GG is the length of a longest cycle. By exploiting our recent results on resistance of snarks, we construct infinite classes of cyclically 44-, 55- and 66-edge-connected cubic graphs with circumference ratio c(G)/V(G)c(G)/|V(G)| bounded from above by 0.8760.876, 0.9600.960 and 0.9900.990, respectively. In contrast, the dominating cycle conjecture implies that the circumference ratio of a cyclically 44-edge-connected cubic graph is at least 0.750.75. In addition, we construct snarks with large girth and large circumference deficit, solving Problem 1 proposed in [J. H\"agglund and K. Markstr\"om, On stable cycles and cycle double covers of graphs with large circumference, Disc. Math. 312 (2012), 2540--2544]

    On almost hypohamiltonian graphs

    Get PDF
    A graph GG is almost hypohamiltonian (a.h.) if GG is non-hamiltonian, there exists a vertex ww in GG such that GwG - w is non-hamiltonian, and GvG - v is hamiltonian for every vertex vwv \ne w in GG. The second author asked in [J. Graph Theory 79 (2015) 63--81] for all orders for which a.h. graphs exist. Here we solve this problem. To this end, we present a specialised algorithm which generates complete sets of a.h. graphs for various orders. Furthermore, we show that the smallest cubic a.h. graphs have order 26. We provide a lower bound for the order of the smallest planar a.h. graph and improve the upper bound for the order of the smallest planar a.h. graph containing a cubic vertex. We also determine the smallest planar a.h. graphs of girth 5, both in the general and cubic case. Finally, we extend a result of Steffen on snarks and improve two bounds on longest paths and longest cycles in polyhedral graphs due to Jooyandeh, McKay, {\"O}sterg{\aa}rd, Pettersson, and the second author.Comment: 18 pages. arXiv admin note: text overlap with arXiv:1602.0717

    Thoughts on Barnette's Conjecture

    Full text link
    We prove a new sufficient condition for a cubic 3-connected planar graph to be Hamiltonian. This condition is most easily described as a property of the dual graph. Let GG be a planar triangulation. Then the dual GG^* is a cubic 3-connected planar graph, and GG^* is bipartite if and only if GG is Eulerian. We prove that if the vertices of GG are (improperly) coloured blue and red, such that the blue vertices cover the faces of GG, there is no blue cycle, and every red cycle contains a vertex of degree at most 4, then GG^* is Hamiltonian. This result implies the following special case of Barnette's Conjecture: if GG is an Eulerian planar triangulation, whose vertices are properly coloured blue, red and green, such that every red-green cycle contains a vertex of degree 4, then GG^* is Hamiltonian. Our final result highlights the limitations of using a proper colouring of GG as a starting point for proving Barnette's Conjecture. We also explain related results on Barnette's Conjecture that were obtained by Kelmans and for which detailed self-contained proofs have not been published.Comment: 12 pages, 7 figure
    corecore