2,692 research outputs found

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper motivates and presents a program logic for reasoning about multithreaded Java-like programs with concurrency primitives such as dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits.\ud This paper presents the basic principles to reason about thread creation and thread joining. It finishes with an outlook how this logic will evolve into a full-fledged verification technique for Java (and possibly other multithreaded languages)

    A Concurrent Perspective on Smart Contracts

    Get PDF
    In this paper, we explore remarkable similarities between multi-transactional behaviors of smart contracts in cryptocurrencies such as Ethereum and classical problems of shared-memory concurrency. We examine two real-world examples from the Ethereum blockchain and analyzing how they are vulnerable to bugs that are closely reminiscent to those that often occur in traditional concurrent programs. We then elaborate on the relation between observable contract behaviors and well-studied concurrency topics, such as atomicity, interference, synchronization, and resource ownership. The described contracts-as-concurrent-objects analogy provides deeper understanding of potential threats for smart contracts, indicate better engineering practices, and enable applications of existing state-of-the-art formal verification techniques.Comment: 15 page

    A Verification Technique for Deterministic Parallel Programs (extended version)

    Get PDF
    A commonly used approach to develop parallel programs is to augment a sequential program with compiler directives that indicate which program blocks may potentially be executed in parallel. This paper develops a verification technique to prove correctness of compiler directives combined with functional correctness of the program. We propose syntax and semantics for a simple core language, capturing the main forms of deterministic parallel programs. This language distinguishes three kinds of basic blocks: parallel, vectorized and sequential blocks, which can be composed using three different composition operators: sequential, parallel and fusion composition. We show that it is sufficient to have contracts for the basic blocks to prove correctness of the compiler directives, and moreover that functional correctness of the sequential program implies correctness of the parallelized program. We formally prove correctness of our approach. In addition, we define a widely-used subset of OpenMP that can be encoded into our core language, thus effectively enabling the verification of OpenMP compiler directives, and we discuss automated tool support for this verification process

    Runtime-guided mitigation of manufacturing variability in power-constrained multi-socket NUMA nodes

    Get PDF
    This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493, SEV-2011-00067), by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243). This work was also partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-689878). Finally, the authors are grateful to the reviewers for their valuable comments, to the RoMoL team, to Xavier Teruel and Kallia Chronaki from the Programming Models group of BSC and the Computation Department of LLNL for their technical support and useful feedback.Peer ReviewedPostprint (published version

    Safe Parallelism: Compiler Analysis Techniques for Ada and OpenMP

    Get PDF
    There is a growing need to support parallel computation in Ada to cope with the performance requirements of the most advanced functionalities of safety-critical systems. In that regard, the use of parallel programming models is paramount to exploit the benefits of parallelism. Recent works motivate the use of OpenMP for being a de facto standard in high-performance computing for programming shared memory architectures. These works address two important aspects towards the introduction of OpenMP in Ada: the compatibility of the OpenMP syntax with the Ada language, and the interoperability of the OpenMP and the Ada runtimes, demonstrating that OpenMP complements and supports the structured parallelism approach of the tasklet model. This paper addresses a third fundamental aspect: functional safety from a compiler perspective. Particularly, it focuses on race conditions and considers the fine-grain and unstructured capabilities of OpenMP. Hereof, this paper presents a new compiler analysis technique that: (1) identifies potential race conditions in parallel Ada programs based on OpenMP or Ada tasks or both, and (2) provides solutions for the detected races.This work was supported by the Spanish Ministry of Science and Innovation under contract TIN2015-65316-P, and by the FCT (Portuguese Foundation for Science and Technology) within the CISTER Research Unit (CEC/04234).Peer ReviewedPostprint (author's final draft

    GPUVerify: A Verifier for GPU Kernels

    Get PDF
    We present a technique for verifying race- and divergence-freedom of GPU kernels that are written in mainstream ker-nel programming languages such as OpenCL and CUDA. Our approach is founded on a novel formal operational se-mantics for GPU programming termed synchronous, delayed visibility (SDV) semantics. The SDV semantics provides a precise definition of barrier divergence in GPU kernels and allows kernel verification to be reduced to analysis of a sequential program, thereby completely avoiding the need to reason about thread interleavings, and allowing existing modular techniques for program verification to be leveraged. We describe an efficient encoding for data race detection and propose a method for automatically inferring loop invari-ants required for verification. We have implemented these techniques as a practical verification tool, GPUVerify, which can be applied directly to OpenCL and CUDA source code. We evaluate GPUVerify with respect to a set of 163 kernels drawn from public and commercial sources. Our evaluation demonstrates that GPUVerify is capable of efficient, auto-matic verification of a large number of real-world kernels

    Contract-Based General-Purpose GPU Programming

    Get PDF
    Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. An obstacle to widespread adoption, however, is the difficulty of programming them and the low-level control of the hardware required to achieve good performance. This paper suggests a programming library, SafeGPU, that aims at striking a balance between programmer productivity and performance, by making GPU data-parallel operations accessible from within a classical object-oriented programming language. The solution is integrated with the design-by-contract approach, which increases confidence in functional program correctness by embedding executable program specifications into the program text. We show that our library leads to modular and maintainable code that is accessible to GPGPU non-experts, while providing performance that is comparable with hand-written CUDA code. Furthermore, runtime contract checking turns out to be feasible, as the contracts can be executed on the GPU

    Evaluation of the parallel computational capabilities of embedded platforms for critical systems

    Get PDF
    Modern critical systems need higher performance which cannot be delivered by the simple architectures used so far. Latest embedded architectures feature multi-cores and GPUs, which can be used to satisfy this need. In this thesis we parallelise relevant applications from multiple critical domains represented in the GPU4S benchmark suite, and perform a comparison of the parallel capabilities of candidate platforms for use in critical systems. In particular, we port the open source GPU4S Bench benchmarking suite in the OpenMP programming model, and we benchmark the candidate embedded heterogeneous multi-core platforms of the H2020 UP2DATE project, NVIDIA TX2, NVIDIA Xavier and Xilinx Zynq Ultrascale+, in order to drive the selection of the research platform which will be used in the next phases of the project. Our result indicate that in terms of CPU and GPU performance, the NVIDIA Xavier is the highest performing platform
    corecore