
Evaluation of the Parallel Computational
Capabilities of Embedded Platforms

for Critical Systems

Author:
Alvaro Jover-Alvarez

Advisor:
Dr. Leonidas Kosmidis

Department of Computer Architecture
Universitat Politècnica de Catalunya (UPC)

Barcelona Supercomputing Center (BSC)

High Performance Computing
Master in Innovation and Research in Informatics (MIRI)

Facultat d’Informàtica de Barcelona (FIB)
Universitat Politècnica de Catalunya (UPC)

Computer Architecture - Operating Systems Group (CAOS)
Barcelona Supercomputing Center (BSC)

October 21, 2021

Acknowledgements

This work is funded by the European Commission’s Horizon 2020 programme under the UP2DATE
project (grant agreement 871465). It is also partially supported by the Spanish Ministry of Economy
and Competitiveness (MINECO) under grants PID2019-107255GB, FJCI-2017-34095, TIN2015-
65316-P and the HiPEAC Network of Excellence. This work has also received funding from the
European Space Agency (ESA) under the GPUs for Space (GPU4S) Project, answer to the ESA
ITT AO/1-9010/17/NL/AF.

This thesis wouldn’t have been possible without my advisor Dr. Leonidas Kosmidis and his enor-
mous support, numerous advices and help. I would like also to thank him for giving me the
opportunity to participate in the GPU4S and the Horizon 2020 UP2DATE project.

I would like also to thank all the collaborators that contributed in one way or another to the project:
ESA, IKERLAN, OFFIS, IAV, TTTech Auto, Marelli, CAF Signalling and Airbus Defence and
Space.

I would also like to thank specially Leonidas Kosmidis and Ivan Rodriguez Ferrandez from the
CAOS group and Alejandro J. Calderón from IKERLAN for their help in the development of the
different publications that contributed to this project.

In closing, I would like to highlight the great support of my family and friends, for their constant
support during this pandemic, without them this would not have been possible.

“Happiness can be found even in the darkest of times, if one only remembers to turn on the light.”

Albus Dumbledore

Abstract

Modern critical systems need higher performance which cannot be delivered by the simple archi-
tectures used so far. Latest embedded architectures feature multi-cores and Graphics Processing
Units (GPUs), which can be used to satisfy this need. In this thesis we parallelise relevant appli-
cations from multiple critical domains represented in the GPU4S benchmark suite, and perform a
comparison of the parallel capabilities of candidate platforms for use in critical systems.

In particular, we port the open source GPU4S Bench benchmarking suite in the OpenMP program-
ming model, and we benchmark the candidate embedded heterogeneous multi-core platforms of the
H2020 UP2DATE project, NVIDIA TX2, NVIDIA Xavier and Xilinx Zynq Ultrascale+, in order
to drive the selection of the research platform which will be used in the next phases of the project.
Our result indicate that in terms of Central Processing Unit (CPU) and GPU performance, the
NVIDIA Xavier is the highest performing platform.

Contents

Abstract 1

1 Introduction 9

1.1 Introduction and Motivation . 9

1.2 Contributions . 10

1.3 Thesis Organisation . 10

2 State of the Art 11

2.1 Hardware platforms for Critical Systems . 11

2.1.1 Traditional architectures . 12

2.1.2 Parallel and heterogeneous architectures for critical systems 17

2.2 CPU Parallel Processing Methodologies . 20

2.2.1 General Purpose Multi-core Programming models 21

2.2.2 Parallel Processing in Critical Systems . 30

2.3 GPU Compute Processing Methodologies . 43

2.3.1 General purpose programming models . 44

2.3.2 Programming models for critical systems . 59

3 The UP2DATE Project 65

3.1 Overview . 65

3.2 Platform requirements . 67

1

Contents

3.2.1 Project proposal requirements . 67

3.2.2 Explored requirements . 68

3.3 The GPU4S Benchmark Suite . 69

3.3.1 Porting GPU4S Bench to OpenMP . 70

4 Experimental Setup 71

4.1 Candidate platforms . 71

4.1.1 NVIDIA Jetson TX2 . 72

4.1.2 NVIDIA Jetson AGX Xavier . 73

4.1.3 Xilinx Zynq Ultrascale+ ZCU102 . 74

5 Experimentation 76

5.1 Single Core Performance comparison . 76

5.2 Multi-Core Performance comparison . 77

5.3 GPU Performance comparison . 78

5.4 CPU to GPU comparison . 79

6 Conclusions and Future Work 81

7 Publications 83

2

List of Figures

2.1 ESA’s Free Leon-1 block diagram. Original figure credit: European Space Agency. . 13

2.2 GR740 Quad-Core LEON4 Processor. Original figure credit: Cobham Gaisler. 15

2.3 Block Diagram of TC39x. Original figure credit: infineon. 16

2.4 Nvidia Xavier block diagram. Original figure credit: Wikichip. 18

2.5 Zynq UltraScale+ MPSoC Block Diagram. Original figure credit: Xilinx. 19

2.6 Time Slicing policies (Images credit: The Zephyr Project). 32

2.7 Embedded Multicore Building Blocks (EMB2) architecture. Original image credit:
Siemens and Multicore Association. 40

2.8 CPU and GPU architecture comparison. Original images credit: NVIDIA. 43

2.9 CPU and GPU workload distribution strategy. 44

2.10 CUDA program execution flow. Original image credit: NVIDIA. 46

2.11 OpenCL program execution flow. Image credit: Khronos Group. 50

2.12 LULESH – Speedup Over Serial (Higher is Better). Image credit: [64]. 57

3.1 UP2DATE SASE contracts. 66

3.2 UP2DATE software update cycle. 67

4.1 NVIDIA DRIVE AGX Xavier. Image courtesy of NVIDIA. 73

4.2 Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. Image courtesy of Xilinx. 74

5.1 Single core performance comparison between the four CPUs found in the three can-
didate platforms, relative to the performance of Zynq Ultrascale+. 77

3

List of Figures

5.2 Relative Multicore performance comparison between of Xavier and TX2. 78

5.3 Relative GPU performance of Xavier over the TX2. 78

5.4 Relative GPU performance over the CPU in the same SoC. 79

4

List of Tables

2.1 NVPModel clock configuration for Jetson AGX Xavier 16GB and 32GB 17

2.2 Custom configuration for the power modes of the V1605B (GigaIPC) 20

2.3 List of some of the platforms, languages and libraries that support OpenCL acceler-
ation. An updated list can be found in [52]. 49

3.1 GPU4S Benchmarks used for the evaluation of the candidate platforms performed
in this thesis. The versions used in the Multi-core CPU column, were implemented
in the context of this thesis. 70

4.1 Manufacturer’s Performance modes for Nvidia’s TX2 72

5

Acronyms

ADAS Advanced Driver-Assistance Systems.

AI Artificial Intelligence.

AMBA Advanced Microcontroller Bus Architecture.

API Application Programming Interface.

ASIC application-specific integrated circuits.

BSC Barcelona Supercomputing Center.

COTS Commercial off-the-shelf.

CPI clock-per-instruction.

CPU Central Processing Unit.

DLA Deep Learning Accelerator.

DMA Direct Memory Access.

DSP Digital Signal Processing.

ECC Error-Correcting Code.

EDF Earliest deadline first.

EMB2 Embedded Multicore Building Blocks.

ESA European Space Agency.

FPGA Field-Programmable Gate Array.

FPU Floating-Point Unit.

GLSL OpenGL Shading Language.

6

Acronyms

GPGPU General-purpose computing on graphics processing units.

GPU Graphics Processing Unit.

GPU4S GPUs for Space.

HPC High Performance Computing.

HSM Hardware Security Module.

IoT Internet Of Things.

ISA Instruction Set Architecture.

KSCAF Khronos Safety Critical Advisory Forum.

MAC Multiply–accumulate.

MCCPS Mixed Criticality Cyber-Physical System.

MIPS Million Instructions Per Second.

MMU Memory Management Unit.

MPU Memory Protection Unit.

MTAPI Multicore Task Management API.

NASA National Aeronautics and Space Administration.

NGMP Next Generation Microprocessor.

OBPMark On-Board Processing Benchmarks.

OTASU Over-The-Air Software Updates.

PMC Performance Monitor Counter.

pthreads POSIX threads.

PVA Programmable Vision Accelerator.

RAW Read After Write.

RTOS Real-time operating system.

SASE Safety and Security.

7

Acronyms

SMP Symmetric Multiprocessing System.

SoC system on a chip.

SoC Systems-on-Chip.

TDP Thermal Design Power.

VPU Vector Processing Unit.

WAR Write After Read.

WAW Write After Write.

WCET Worst Case Execution Time.

8

Chapter 1

Introduction

1.1 Introduction and Motivation

Modern safety critical systems like the ones we can find in the automotive, railway, avionics and
aerospace domains require high performance, in order to provide the computational power needed
to meet the criteria for the implementation of modern advanced functionalities, such as increased
autonomy.

Traditionally, the processors used in these domains were very simple, single-core processors with-
out advanced architectural features, however the increasing need for performance, has led these
industries to start considering more advanced architectures. Heterogeneous platforms are particu-
larly attractive since multi-core processors alone cannot provide the level of performance which can
be delivered by general purpose accelerators such as GPUs and Field-Programmable Gate Arrays
(FPGAs).

This Master Thesis has been performed within the scope of two projects at the Barcelona Super-
computing Center (BSC):

• In the context of the GPU4S project, funded by the ESA, which studies the applicability of
embedded GPUs in the space domain, we extended the open source GPU4S benchmarking
suite by including OpenMP parallelisations for each of the space-relevant algorithms described
in [79].

• In the context of the UP2DATE project, funded by the European Commission’s Horizon
2020 programme, which studies the update features of mixed criticality, high performance
platforms in safety-critical systems, we performed a performance benchmarking study of the
initial selection of candidate platforms using the GPU4S benchmarking suite. This helped to
identify the most performant platform, in order to guide the selection of platform which was
considered in the project during the next phases.

9

Chapter 1. Introduction

1.2 Contributions

The main contributions of this Master Thesis consists on the OpenMP CPU parallelisation of the
GPU4S test suite and a performance benchmarking study of several modern high-performance
heterogeneous embedded platforms suitable for critical systems.

In this thesis we also provide an in-depth review of the current state-of-the-art hardware and
programming models used today in various critical sectors.

We place all this effort in the context of the European Horizon2020 UP2DATE project, where
part of the work was undertaken in its initial stage is to identify a suitable platform for its next
phases. For this reason, we compare the performance capabilities of three potential next-generation
candidates: NVIDIA Xavier, NVIDIA TX2 and Xilinx Zynq Ultrascale+ ZCU102.

In addition, we explain the importance, benefits and challenges of online updating a critical de-
vice, we carry a performance benchmarking evaluation of the three candidate platforms under test
employing the GPU4S benchmark suite developed in the context of GPU4S project, and finally,
we describe the rationale behind the selection of the baseline research devices for the UP2DATE
project, which was published in [53].

1.3 Thesis Organisation

This Master Thesis is organised as follows: Chapter 2 reviews the current and preceding embedded
hardware platforms and parallel compute methodologies for Critical Systems. Chapter 3 describes
more in depth the UP2DATE project, including the platform selection requirements and the work
done in the context of the GPU4S project to benchmark the candidate devices.

Then, Chapter 4 describes the experimental setup for the benchmarking of the candidate boards
defined in the previous chapter, followed by Chapter 5, where we present and discuss the results of
the experiments performed in the context of the UP2DATE project.

Chapter 6 draws the conclusions and presents future avenues for this work and finally, Chapter 7
includes a list of the publications produced in the context of this thesis.

10

Chapter 2

State of the Art

Parallel computing is the science of distributing computation throughout the different available
resources present in a system or series of systems. Within this paradigm we find multiple program-
ming models that define how certain workloads can be distributed and how this can be specified
from the programmer point of view. Since the scope of this thesis encompasses embedded platforms,
we are going to focus our attention only in those programming models that could be used in the
context of an isolated single device. Thus, in Section 2.2 we will study some of the options available
for CPU parallel computing and Section 2.3 elaborates about some of the platforms available for
GPU computing.

2.1 Hardware platforms for Critical Systems

Embedded devices have been dominant over the past decades in many critical sectors, like avionics,
automotive or railway. These devices should comply with a series of strict certification processes
according to domain-specific safety standards, which makes the development and cost of the appli-
cations targeted to the domain very expensive.

The computational demands of modern applications and the coexistence of non-critical and critical
software in a mixed-criticality system require higher performance that can only be achieved by
means of multi-core devices and mono-core devices with higher frequency.

However, single-core platforms with higher frequency present a series of issues that make them
non-eligible in several domains: increased sensibility to electromagnetic interference, low reliability
of thermal dissipation fans and cooling systems volume and weight. Another very relevant issue is
that the industry is moving towards Commercial off-the-shelf (COTS) multi-core devices, making
single-core platforms obsolete in many domains except for micro-controllers or strictly real-time
processors. For this reason, even very conservative markets (avionics) are considering the use of
multi-core devices [21].

11

Chapter 2. State of the Art

Nevertheless, the adoption of multi-core devices in critical sectors is not simple, as most safety
certification standards target single-core architectures. The CAST-32A [22] certification guidance
document for multicores in avionics was presented in 2016 to provide guidance for software planning,
development and verification in multi-core devices. However, as [9] mention in their study, CAST-
32A still presents a series of questions and challenges to resolve under current COTS multi-core
systems.

In this section we will divide the current state of the art of critical embedded architectures in two
categories: Section 2.1.1 references some of the most relevant mono-core and multi-core embedded
boards used nowadays in different critical sectors, and Section 2.1.2, in which we will elaborate on
some of the heterogeneous multi-core platforms targeting critical markets manufactured in the last
few years.

2.1.1 Traditional architectures

Among all the current non-heterogeneous critical architectures we find a good amount of multi-
core processors as chip manufacturers shifted to this paradigm due to the reasons exposed in
Section 2.1. The automotive domain is one of the first safety-critical industries that adopted this
new methodology by implementing specific multi-core hardware designs like the AURIX Tricore
Multicontroller. These type of microcontrollers excell at delivering determinism for the target
platform, but often lack the essential features to run full operating systems, as many of the candidate
platforms disregard the use of Memory Management Units (MMUs).

Another relevant sector that is adopting the use of multi-core processors is the aerospace industry.
Most of the critical and real-time tasks currently performed in this area are carried out with
single-core processors, such as the LEON2, due to the high criticality and real-time nature of
the applications (like a rocket thruster). However, tasks that require lower criticality but need
performance, e.g. instrument control or data processing, are already performed with multi-core
processors such as the LEON3 or LEON4.

2.1.1.1 LEON

The LEON microprocessor family consists of a series of radiation-tolerant CPUs, designed originally
by the ESA, that implements the SPARC V8 Instruction Set Architecture (ISA) developed by Sun
Microsystems [24].

The selection of SPARC as the primary ISA for the LEON family was presented in the final report
of the ERC32 program, where the main objective was to reuse an existing processor architecture to
minimize both software and hardware development cost [78], which also adds to the other benefits
of using this ISA [40]:

12

Chapter 2. State of the Art

• Open architecture without patents or license fees [63].

• Well designed and documented.

• Easy to implement.

• Established software standard.

• Available reference design (Cypress 601).

The original objectives with the development of this processor family were to provide an open,
portable and non-proprietary processor design capable to meet future requirements for performance,
software compatibility and low system cost, while preserving functional safety by providing error
detection and error handling mechanisms [12].

Leon Sparc
integer unit

I cache D cache

Bus interface

EDAC

SRAMPROM I/O

IRQ control

Timers

UART

Watchdog

I/O port

Tx
Rx

Watchdog

I/O

32-bit memory bus

Leon-1
Reset

Clock

DMA

Figure 2.1: ESA’s Free Leon-1 block diagram. Original figure credit: European Space Agency.

As we can see in Figure 2.1, the first Leon design included a Sparc-compatible integer unit, separated
data and instruction caches, an interrupt controller, two 24-bit timers, two UARTs, a 16-bit I/O
port, a power-down feature, write protection, a watchdog timer and a 32-bit memory bus with
EDAC, PROM and SRAM support.

The next paragraphs will focus on two successor LEON designs, the LEON2-FT CPU and the
LEON4 CPU, single-core and multi-core architectures respectively.

13

Chapter 2. State of the Art

LEON2 is the second synthesisable VHDL model from the LEON family developed by ESA. The
experience with LEON1 lead to the development of the LEON2 core, which improved drastically
the base design of the LEON core by including the following features:

• On-chip PCI and SDRAM controllers.

• Multi-set caches

• Hardware multiply and divide units.

• On-chip debug support.

• Advanced Microcontroller Bus Architecture (AMBA) buses.

In addition, LEON2 also improved the overall performance delivered by the original LEON design.
Initially, LEON1 operated at 50 MHz with a clock-per-instruction (CPI) figure of 1.6, resulting in
an average of 30 Million Instructions Per Second (MIPS); while LEON2 ran at 100 MHz with a
CPI of 1.5, achieving an average performance of 70 MIPS. Most of these performance improvements
came through the switch from the 0.35µm CMOS process in LEON1 to the 0.18µm in LEON2 [39].

Based on the LEON2 technology, ESA developed an extension of the core named LEON2-FT to
include advanced fault-tolerance features to withstand arbitrary errors without loss of data, which
is required for processors operating in harsh environments like space, where radiation can introduce
errors.

The LEON2 (non-FT) model is no longer maintained. It is superceded by LEON2-FT, and the
subsequently released LEON models (LEON3, LEON4) [7]. Among other satellites, this core was
used in ESA’s Intermediate eXperimental Vehicle (IXV) [28] and China’s Chang’e-4 lander [5].

LEON4 is the latest multi-core design released by Gaisler Research that improves the design of
the preceding versions of the core. The Symmetric Multiprocessing System (SMP) support present
in the LEON4 core comes from it’s preceding version, LEON3, in which we could find the following
new features according to its specification [33]:

• Advanced 7-stage pipeline.

• Multiply–accumulate (MAC) units.

• High-performance and fully pipelines IEEE-754 Floating-Point Unit (FPU)1.

• Configurable caches.
1https://www.gaisler.com/index.php/products/ipcores/ieee754fpu?task=view&id=138

14

https://www.gaisler.com/index.php/products/ipcores/ieee754fpu?task=view&id=138

Chapter 2. State of the Art

• Local instruction and data scratch pad RAM.

• SPARC Reference MMU (SRMMU) with configurable TLB.

• Up to 125 MHz in FPGA and 400 MHz on 0.13 µm application-specific integrated circuits
(ASIC) technologies.

• Large range of software tools: compilers, kernels, simulators and debug monitors.

The new iteration of the LEON family, LEON4, included the following new features: static branch
prediction, optional L2 cache, 64-bit or 128-bit path to AMBA interface and higher performance
(1.7 DMIPS/MHz as opposed to 1.4 DMIPS/MHz of LEON3) [36] [8].

One of the devices that benefit from the design of the LEON4 is the GR740 Quad-Core LEON4
SPARC V8 Processor (Fig. 2.2) [34], which was released by the fourth quarter of 2020. This device
is part of the ESA roadmap for standard microprocessor components and is the first radiation
hardened implementation of the ESA Next Generation Microprocessor (NGMP) system on a chip
(SoC) architecture [6].

Figure 2.2: GR740 Quad-Core LEON4 Processor. Original figure credit: Cobham Gaisler.

The GR740 has been selected for multiple missions, including ESA’s Copernicus and National
Aeronautics and Space Administration (NASA)’s WFIRST [35].

The LEON family of processors is evolving nowadays presenting newer designs like the LEON5 [37]
or the RISC-V based NOEL-V core [38], enhancing the original design with modern SoC technology
while retaining the essence of the original LEON processor.

15

Chapter 2. State of the Art

2.1.1.2 AURIX Tricore Multicontroller TC397x

The 32-bit-Microcontroller Tricore family unites the elements of a RISC core and a Digital Signal
Processing (DSP) in a single chip. These devices are designed to provide safety and security features
for a wide range of automotive and industrial applications. One of the main features of the AURIX
Tricore family is their high configurability, enabling the end user to choose between a wide range
of memories, peripheral sets, temperatures and packaging options [50].

In terms of performance, the TC39x offers 6 cores running at 300 MHz. The cores are organised
in 2 clusters, divided in 4 lock-stepped cores for functional safety and 2 non lock-stepped cores.
Figure 2.3 shows the block diagram of the TX39x lead device:

Figure 2.3: Block Diagram of TC39x. Original figure credit: infineon.

In addition to the dual lockstep functionality, all RAM memories included in the device are pro-
tected with Error-Correcting Code (ECC). Furthermore, it counts with a number of security features
included in a eVita2 compliant Hardware Security Module (HSM): secure boot process, true random
number generator and cryptographic accelerators. Finally, the device also enables granular power
management to control the power consumption of the different units present in the platform [51].

All these features and the compliance with ASIL-D ISO 26262 made this board a perfect candidate
for the HORIZON2020 UP2DATE European project [53] [57], as part of the automotive use cases.

2https://www.evita-project.org/

16

https://www.evita-project.org/

Chapter 2. State of the Art

2.1.2 Parallel and heterogeneous architectures for critical systems

As mentioned in the introduction to this Section, the current state of the art is populated by multi-
core processors, so any new heterogeneous architecture today is also multi-core. This tendency
has dominated the industry since the last two decades as single-core processors did not deliver the
sought-after performance [42] that multi-core processors could deliver. Unlike traditional multi-
cores which consist of a number of identical cores, heterogeneous architectures include more that a
single type of processing elements, such as different types of (multi-core) processors, as well as ac-
celerators like GPUs and FPGAs. In this subsection, we are going to review different heterogeneous
architectures that are targeting critical systems.

2.1.2.1 NVIDIA Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier is one of the latest embedded systems released by NVIDIA. This
board is focused on the development of certified autonomous machines driven by AI [29]. It also
stands out for its high configurability to operate in different power modes (Table 2.1), which makes
the device suitable for systems that require low power consumption [58].

Mode
Property

MAXN 10W 15W 30W 30W 30W 30W 15W*
Power budget n/a 10W 15W 30W 30W 30W 30W 15W

Mode ID 0 1 2 3 4 5 6 7
Online CPU 8 2 4 8 6 4 2 4
CPU maximal

frequency (MHz)
2265,6 1200 1200 1200 1450 1780 2100 2188

GPU TPC 4 2 4 4 4 4 4 4
GPU maximal

frequency (MHz)
1377 520 670 900 900 900 900 670

DLA cores 2 2 2 2 2 2 2 2
DLA maximal

frequency (MHz)
1395.2 550 750 1050 1050 1050 1050 115.2

PVA cores 2 0 1 1 1 1 1 1
PVA maximal

frequency (MHz)
1088 0 550 760 760 760 760 115.2

Memory maximal
frequency (MHz)

2133 1066 1333 1600 1600 1600 1600 1333

Table 2.1: NVPModel clock configuration for Jetson AGX Xavier 16GB and 32GB

The board features eight customised 64-bit ARMv8.2 Carmel cores developed by NVIDIA, and

17

Chapter 2. State of the Art

includes a Volta GPU with eight stream multiprocessors. It also contains eight tensor cores, an
ASIC specialised in MAC operations capable to perform 64x FP16 MACs or 128x INT8 MACs per
cycle [93].

Volta
Octa-core
Carmel

PVA

MM/DLA Southbridge

dGPU

NVLink

25
6-

bi
t

LP
D

D
R

4X
N

V
Li

nk

Xavier
SoC

PC
Ie

 4

Xavier
SoC 2 PCIe4

Figure 2.4: Nvidia Xavier block diagram. Original figure credit: Wikichip.

As we can see in Figure 2.4, the NVIDIA Xavier also comes with a Deep Learning Accelerator
(DLA) - a physical implementation of the open source Nvidia NVDLA architecture - and two
Programmable Vision Accelerators (PVAs) for processing computer vision, each driven by an ARM
Cortex-R5 core with two dedicated Vector Processing Units (VPUs).

According to NVIDIA, the Xavier board has been designed with security and reliability in mind,
supporting various standards such as ISO-26262 functional safety and ASIL Level C. To this end,
the board also includes many resilience features, such as ECC-protected main memory as well as
L1, L2 and L3 cache. Another relevant feature of the device in relation to critical systems is its
monitoring capabilities, as the device has a series of core and uncore counters [73], as well as a
specialized power monitoring system to be able to measure in depth any application running on
the system [75].

2.1.2.2 Xilinx Ultrascale+ ZCU102

The Xilinx Ultrascale+ is a general purpose heterogeneous, multi-processing platform targeted to
create embedded applications. It comes with four ARM Cortex-A53 CPUs, two ARM Cortex-R5F
real-time processors, and a Mali 400 MP2 GPU. The ZCU102, specifically, comes with high speed
DDR4 SODIMM, FMC expansion ports, multi-gigabit per second serial transceivers, a variety of
peripheral interfaces, and FPGA logic for user customized designs [95].

Regarding the real time capabilities of the board, the RT unit is set up to run in split mode:

• RPU-0: Is configured to run a Real-time operating system (RTOS).

• RPU-1: Is configured to run bare-metal.

18

Chapter 2. State of the Art

This makes the device suitable for real time applications as it complies with safety and security
standards.

Figure 2.5 displays a high-level block diagram of the device architecture and key building blocks
inside the processing system and the programmable logic [96].

Figure 2.5: Zynq UltraScale+ MPSoC Block Diagram. Original figure credit: Xilinx.

Zynq has a dedicated documentation and framework to handle power in the architecture [94]. The
SoC device is divided into four major power domains:

• Full power domain (FPD): Comprises the four ARM Cortex A-53 CPUs, as well as a number
of peripherals used by them.

• Low power domain (LPD): Contains the R5 real-time processors, the platform management
unit, the configuration security unit and the remaining on-chip peripherals.

• Programmable logic (PL) power domain: Contains the programmable logic.

• Battery-power domain: Contains the real-time clock as well as the battery-backed RAM.

These power domains can be altered through the power management Application Programming

19

Chapter 2. State of the Art

Interface (API) by performing categorical operations listed in the following types: a) suspending and
waking up processing units, b) slave device power management, such as memories and peripherals,
c) direct-access and d) miscellaneous.

2.1.2.3 GigaIPC AMD Ryzen V1605B

The Ryzen Embedded V1000 processor family is one of the latest collection of embedded boards
introduced by AMD. This collection features the Zen CPU technology and the Vega GPU tech-
nology in a Systems-on-Chip (SoC) solution oriented to High Performance Computing (HPC) and
multimedia processing in embedded devices [10].

Specifically, the V1605B contains four CPU cores, each with 2 hardware threads and a Radeon Vega
GPU counting with eight execution units. As for its configurability, the board does not provide
any mechanism to switch between predefined power modes, however the manufacturer specifies a
Thermal Design Power (TDP) between 12 and 25 Watts, obtaining a frequency up to 3.6 GHz.

In an effort to make its reconfigurability better, [80] has developed a custom solution to implement
a number of power modes similar to the ones present in the NVIDIA Xavier platform. The details
of some of the power modes present in the configuration script can be found in table 2.2:

Power
Mode

Number
of CPUs

Threads
per CPU

Memory
Frequency (MHz)

GPU
Frequency (MHz)

12W 2 1 400 200
15W 4 1 1067 1100

Table 2.2: Custom configuration for the power modes of the V1605B (GigaIPC)

This embedded device supports up to 32 GiB of dual-channel DDR4-2400 memory and incorporates
Radeon Vega 8 Graphics operating at up to 1.1 GHz.

However, official information regarding this embedded board is quite scarce, as the device, at the
time of writing, does not have a technical reference manual. Therefore, some of the information
that can be found is considered preliminary and may change by final release [92].

2.2 CPU Parallel Processing Methodologies

The most basic CPU workload distribution consists on converting a sequential job that runs in a
single core to a parallel job that runs in multiple cores. We call this distribution strategy multi-
core parallelism. In this type of parallelism, each core is in charge of processing part of the full
computation present in a section of a problem. Thus, if a program is run with n cores, then ideally
it should be n times faster than the sequential implementation of the same program:

20

Chapter 2. State of the Art

Tparallel =
Tsequential

n
(2.1)

Even if this speed-up is impossible to obtain, as Gene Amdahl and John L. Gustafson expose in
their works [11] [47], multi-core parallelism has been employed historically to optimise problems.

2.2.1 General Purpose Multi-core Programming models

In this Section we are going to explore different multi-core programming environments. Section
2.2.1.1 showcases POSIX threads (pthreads), an execution model that provides low-level thread
management programmability that enables creating and managing parallel tasks explicitly. How-
ever, this level of flexibility complicates the creation of parallel code, as the programmer must
identify and handle complex specific details, such as critical sections or locks, which can lead to
poor performance.

High level multi-core programming models have born to overcome these issues, offering a simpler
way to approach parallelism. One of the most popular high level multi-core APIs is OpenMP, which
supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, in
many platforms. Section 2.2.1.2 provides some details about OpenMP and its specification.

Another relevant high level multi-core programming model is StarSs, developed at BSC, in which
the user must identify individual pieces of code that can be expressed as tasks [77]. OmpSs rep-
resents the integration of StarSs into a single characteristic programming model, encompassing
asynchronous parallelism and heterogeneity support in devices such as GPUs and FPGAs [31].
Section 2.2.1.3 exposes some of the features of OmpSs.

2.2.1.1 pthreads

pthreads is a set of C language programming types and procedure calls that implements a stan-
dardized interface for the use of threads following the IEEE POSIX 1003.1c standard [1].

Before POSIX standard was created, different vendors had their own proprietary implementations
of threads, which diverged significantly from each other, complicating the development of portable
threaded applications. The POSIX standard emerged out of the need to unify and establish a
common implementation of threads.

pthreads comprises a series of subroutines that can be classified in four categories [91]:
• Thread management: These routines enable the programmer to manage the thread at-

tributes and context (creating, attaching, scheduling, etc.).

• Mutexes: These routines manage synchronisation (creating, destroying, locking and unlock-
ing mutexes).

21

Chapter 2. State of the Art

• Condition variables: These routines enable the programmer to define certain level of com-
munication between threads that shared a mutex by specifying a series of conditions.

• Read/Write synchronisation: These routines manage read/write locks and barriers.

As we have seen in the previous list, pthreads is made of a series of low level functions that allows
the user to manage threads explicitly. This implies that the programmer must control all write and
read dependencies, as well as the synchronization between threads. This level of flexibility entails
a certain degree of complexity such that applications that contain fine grained thread management
become less readable. Following next, we present a minimal pthreads VectorSum example:

1 #include <pthread.h>
2

3 int A[1000], B[1000], C[1000];
4 int threads_id[4] = {0,1,2,3};
5

6 void* vectorSum (void* arg) {
7 int *local_tid = (int*)arg;
8 for(int i = (local_tid * 250); i < (local_tid + 1)*250; ++i) {
9 C[i] = A[i] + B[i];

10 }
11 pthread_exit(0);
12 }
13

14 int main() {
15 pthread_t tid[4];
16 ...
17 for(int i = 0; i < 4; ++i) {
18 pthread_create(&tid[i], NULL, vectorSum , &threads_id[i]);
19 }
20 ...
21 for(int i = 0; i < 4; ++i) {
22 pthread_join(tid[i], NULL);
23 }
24 ...
25 pthread_exit(NULL);
26 }

Listing 2.1: VectorSum example in pthreads

In the example above, we present the VectorSum problem, where we add two vectors with the same
number of elements. For the sake of simplicity, we create 4 threads where each thread computes
1
4 th of the array elements.

The global variable threads_id defines an identifier for each running thread. Each id is passed
to the corresponding thread scope in the pthread_create call. Then, the function VectorSum
performs the operation over 250 consecutive elements. Finally, pthread_join blocks the calling
threads until the target thread terminates.

22

Chapter 2. State of the Art

As we can see from the example above, it is required to engineer a customised solution based on
the intended parallel strategy, therefore, advanced knowledge about multi-threading intrinsics is
required to implement parallel efficient code.

In Listing 2.1, we studied a subset of the most relevant pthreads primitives, however due to the
simplicity of the problem we have not employed more advanced functions to deal with mutexes
and/or locking. The following example illustrates a synchronisation problem using pthreads:

1 #include <pthread.h>
2

3 int counter = 0;
4

5 void* kernel(void* arg) {
6 counter += 1;
7 printf("Task %d starts.\n", counter);
8 for (unsigned long i = 0; i < (0xFFFFFFFF); i++);
9 printf("Task %d ends.\n", counter);

10

11 pthread_exit(0);
12 }
13

14 int main() {
15 pthread_t tid[2];
16

17 for(int i = 0; i < 2; ++i) {
18 pthread_create(&tid[i], NULL, &kernel, NULL);
19 }
20

21 for(int i = 0; i < 2; ++i) {
22 pthread_join(tid[i], NULL);
23 }
24

25 pthread_exit(NULL);
26 }

Listing 2.2: Synchronisation issue in pthreads

Running the code from Listing 2.2 results in the following output:

Task 1 starts.
Task 2 starts.
Task 2 ends.
Task 2 ends.

This is because counter is a global variable that a second thread modifies while the first thread
processes the loop, as both threads call the function almost simultaneously. In order to sort this
issue we need to make the second thread wait until the first thread is done with the computation.

23

Chapter 2. State of the Art

pthread_mutex_lock is a function that can be used to lock a mutex object previously initialised
in pthread_mutex_init:

1 #include <pthread.h>
2

3 int counter = 0;
4 pthread_mutex_t lock;
5

6 void* kernel(void* arg) {
7 pthread_mutex_lock(&lock);
8

9 counter += 1;
10 printf("Task %d starts.\n", counter);
11 for (unsigned long i = 0; i < (0xFFFFFFFF); i++);
12 printf("Task %d ends.\n", counter);
13

14 pthread_mutex_unlock(&lock);
15 pthread_exit(0);
16 }
17

18 int main() {
19 pthread_t tid[2];
20 pthread_mutex_init(&lock, NULL)
21

22 for(int i = 0; i < 2; ++i) {
23 pthread_create(&tid[i], NULL, &kernel, NULL);
24 }
25

26 for(int i = 0; i < 2; ++i) {
27 pthread_join(tid[i], NULL);
28 }
29

30 pthread_mutex_destroy(&lock);
31 pthread_exit(NULL);
32 }

Listing 2.3: Mutex lock in pthreads

This time thread synchronization took place by the use of a lock:

Task 1 starts.
Task 1 ends.
Task 2 starts.
Task 2 ends.

The two examples exposed above, demonstrate at a very simplistic level the complexity implied to
create parallel code in pthreads. This exposes the need of more simpler parallel methodologies that
we’ll study in the following Subsections.

24

Chapter 2. State of the Art

2.2.1.2 OpenMP

OpenMP follows the fork-join model in which a main thread forks a set number of sub-threads,
subsequently dividing a task among them. The API also supports the task-parallel model since
OpenMP 3.0, whereas the programmer requires to specify deferrable units of work called tasks,
which by definition, are not bound to any specific thread [15].

OpenMP specification defines the different compiler parameters needed to compile an OpenMP
program per platform and language3. The part of the program that is meant to run in parallel should
be marked with certain OpenMP directives and clauses based on the intention of the programmer,
accompanied by a very basic syntax we can find in the following code section:

#pragma omp <directive> <clauses>

Following next, we present a list some of the most relevant directives (also called constructs)
supported in the environment4:

• parallel: This directive is employed to instantiate additional threads to perform the work
scoped by the pragma in parallel.

• for: This directive divides the loop body among the available threads. The clauses of the
directive specify how the division is made.

• critical: The scope under this directive ensures that the associated structured block will
be executed by a single thread at a time.

• atomic: The atomic construct should be used when a specific storage location requires to be
accessed atomically, meaning that only one thread can update it simultaneously.

• barrier: Forces the threads to wait until the remaining ones finish the previous work.

• task: The code within the task scope will be executed by a single thread. Tasks are run on
demand based on their priority and dependencies.

As we pointed previously, OpenMP supports a number of clauses that allow the programmer to
mutate the default behaviour of the constructs. Next, we present a list with some of the most
popular clauses we can find in OpenMP:

3https://www.openmp.org/resources/openmp-compilers-tools/
4https://www.openmp.org/spec-html/5.0/openmp.html

25

https://www.openmp.org/resources/openmp-compilers-tools/
https://www.openmp.org/spec-html/5.0/openmp.html

Chapter 2. State of the Art

• num_threads(num): Specifies the number of threads to use within the scoped parallel region.

• shared(var0, ..., varn): By using this clause, the data specified in the parallel region can be
viewed and accessed by every thread.

• private(var0, ..., varn): The variables under this clause will be copied per thread, meaning
that each thread will have a local copy of the same variable. Private variables aren’t initialised
and their value isn’t maintained outside the parallel region.

• firstprivate(var0, ..., varn): Like private except the variable is initialised to its original
value.

• reduction(type:var0, ..., varn): Each thread privatises the listed variables in the clause
to then update the original variable associated with each private copy by performing the
operation (type) dictated in the reduction clause, avoiding any kind of data races.

• schedule(type, size): Determines how the iterations of a loop are scheduled:

– static: Contiguous iterations are distributed equally among all threads. The size vari-
able determines how many contiguous iterations will be assigned to the same thread.

– dynamic: Works like the static scheduling with the difference that if a thread completes
the assigned iterations, it will continue to compute non-assigned iterations following a
first-come, first-served order.

– guided: Each thread is assigned to a contiguous large chunk of iterations. The size of
the chunk will exponentially decrease with each allocation down to a set size.

• depends((in|out|inout):var0, ..., varn): This is a task dependency clause that according
the specified type, the tasks will be deferred accordingly to avoid Read After Write (RAW),
Write After Read (WAR) and Write After Write (WAW) dependencies.

OpenMP also provides a series of functions to gather run-time information and configure the parallel
environment. Some of the most relevant functions are listed below:

• omp_get_max_threads(): Returns an upper bound on the number of threads available to
create new parallel regions without taking in consideration num_threads.

• omp_get_num_threads(): Returns the number of threads in the current scope.

• omp_get_thread_num(): Returns the thread id of the calling thread.

• omp_set_num_threads(num): Sets the number of threads used for downstream parallel re-
gions that do not contain the num_threads clause.

• omp_get_wtime(): Returns the elapsed time in seconds with double precision.

26

Chapter 2. State of the Art

So far, we have presented a subset of features of OpenMP that demonstrate the programmability
of the API to create parallel programs. Nevertheless, an exhastive coverage of the full features of
OpenMP are out of the scope of this thesis. Next, we present a parallel VectorSum example using
OpenMP fork-join model:

1 void vectorSum (const double *A, const double *B, double *C) {
2 #pragma omp parallel for
3 for (unsigned i = 0; i < SIZE; ++i) {
4 C[i] = A[i] + B[i];
5 }
6 }

Besides the fork-join model we saw above, OpenMP also supports working with tasks, similar to
pthreads, but handling the dependencies, locking and synchronisation automatically. The example
below shows a demonstration of an iterative task decomposition with a task granularity of 1 iteration
over the VectorSum problem:

1 void vectorSum (const double *A, const double *B, double *C) {
2 for (unsigned i = 0; i < SIZE; ++i) {
3 #pragma omp task firstprivate(i) shared(A, B, C)
4 C[i] = A[i] + B[i];
5 }
6 }

Usually, OpenMP provides parallelism only by annotating a sequential program with pragmas,
which makes it ideal to work with, especially when working with legacy code, or maintaining code
for multiple architectures. Thanks to this, it hardly introduces any noise in the source code due
to the parallelism intrinsics and makes OpenMP a perfect candidate to simple and easy-to-read
parallel code.

2.2.1.3 OmpSs

OmpSs enables asynchronous parallelism by managing the data-dependencies between the different
identified tasks in the running environment. One of the major advantages of OmpSs is that it sup-
ports heterogeneity by introducing the target construct, which allows the programmer to specify
on which devices the scoped tasks should be executed. If no device clause is specified within this
construct, OmpSs defaults to the SMP. Section 2.3.1.5 provides more information on the hetero-
geneity of OmpSs. One of the key differences with OpenMP, is that in OmpSs, the task construct
can also be used in void typed function declarations, which makes every invocation of that function
a task instantiation point.

As we mentioned in the introduction, OmpSs is an effort to implement the ideas from the StarSs
programming model, and many of these ideas have been introduced also into OpenMP. In fact,
OmpSs acts as a forerunner of several OpenMP features, showing their potential, and then they are
brought in OpenMP committee for discussion, in which BSC is represented. The following Figure,
extracted from the OmpSs specification5, summarises the contributions to OpenMP:

5https://pm.bsc.es/ftp/ompss/doc/spec/

27

https://pm.bsc.es/ftp/ompss/doc/spec/

Chapter 2. State of the Art

As shown above, OmpSs contributed to OpenMP with a prototype of asynchronous tasking, which
was made available in OpenMP 3.0 (2008). Since then, OmpSs has been contributing to the
OpenMP programming model in the context.

OmpSs parallelism is centered around asynchronous tasking, for that, the environment allows ex-
pressing data-dependences among them using different clauses in the task construct:

• in: The data specified must be available in the address space where the task is executed, the
data will be read only.

• out: The data specified will be generated by the task in the address space where the task is
executed.

• inout: The data specified must be available in the address space where the task runs, also,
the data will be updated in the scoped code segment.

These dependence clauses shape OmpSs programming model, as we will use them in most of the
constructs, the list of constructs relevant for multi-core programming is presented below:

• Task construct: The programmer can specify a task by adding this syntax to any structured
block: #pragma omp task [clauses]. These are some of the supported clauses found in this
construct:

– private, firstprivate, shared, reduction: Perform the same operation we have
seen in Section 2.2.1.2.

– depend(<type>: var0, ..., varn), <depend-type>(var0, ..., varn): This clause allows to
infer task scheduling restrictions from the parameters it defines. The syntax of this clause
includes the dependence type followed by its associated variables.

– tied: The task gets bound to the thread that starts its execution. In case this task has
paused its execution, only the same thread can resume it.

– if: If the expression contained in the if clause is false, then the running task must
wait until the newly created task completes its execution.

28

Chapter 2. State of the Art

• Loop construct: When this type of construct is found, a task is created for each of the blocks
in which the iteration space is divided. Unlike OpenMP, OmpSs only supports scheduling
clauses in the loop construct. The syntax of the construct and the clauses corresponds with
the syntax provided in OpenMP described in Section 2.2.1.2.

• Taskwait construct: Specifies a wait on the completion of all direct descendant tasks. It’s
defined by: #pragma omp taskwait. The valid clauses are the following:

– on(var0, ..., varn): Specifies to wait only for the subset of direct descendant tasks.

• Taskyield directive: Specifies that the ongoing task can be stopped and that the scheduler is
allowed to schedule another task. The syntax is the following: #pragma omp taskyield.

• Atomic construct: Ensures that the enclosed expression gets executed atomically. Defined
by: #pragma omp atomic.

• Critical construct: Ensures that only one thread at a time is executing the scoped region,
other threads will wait at the start of the critical section (mutual exclusion). The syntax of
the critical construct is the following: #pragma omp critical, followed by a block.

Following next, we display a matrix multiplication pseudo-code in OmpSs to demonstrate some of
the language features6:

1 #pragma omp task in([NB][NB]A, [NB][NB]B) inout([NB][NB]C)
2 void mm(double *A, double *B, double *C, long NB)
3 {
4 for (int i = 0; i < NB; ++i)
5 for (int j = 0; j < NB; ++j)
6 {
7 double tmp=C[(i*NB)+j];
8 for (int k = 0; k < NB; ++k)
9 {

10 tmp+=A[(i*NB)+k]*B[k*NB+j];
11 }
12 C[(i*NB)+j]=tmp;
13 }
14 }
15

16 void compute(int *A, int *B, int *C, unsigned long NB)
17 {
18 for (unsigned i = 0; i < DIM; i++)
19 for (unsigned j = 0; j < DIM; j++)
20 for (unsigned k = 0; k < DIM; k++)
21 mm(A[i][k], B[k][j], C[i][j], NB);
22

23 #pragma omp taskwait
24 }

6https://github.com/bsc-pm/ompss-ee/blob/master/02-beginners/matmul/.config/matmul.c

29

https://github.com/bsc-pm/ompss-ee/blob/master/02-beginners/matmul/.config/matmul.c

Chapter 2. State of the Art

As we have saw in the example above, OmpSs makes task programming intuitive thanks to the
different dependency directives defined by the specification of the parallel model. Besides all the
exposed features, OmpSs also supports heterogeneity that we will study in Section 2.3.1.5.

2.2.2 Parallel Processing in Critical Systems

As we saw in Section 2.1, critical markets are moving towards multi-core systems, mainly due to the
current availability, price and performance of single-core systems. However, this need for adaptation
is not free for the critical domain, as the software resources employed must meet a number of
requirements to be certified. For this reason, multiple operating systems and programming models
adapted to the critical domain began to emerge.

In this Section we are going cover some state of the art RTOS (Section 2.2.2.1), as well as ADA/S-
PARK, a programming language intended for the development of high integrity software (Section
2.2.2.2); and finally in Section 2.2.2.3 we will revise some of the most relevant multi-core program-
ming models for critical systems to date.

2.2.2.1 RTOS based Multicore Processing

A RTOS is a type of operative system scoped to real-time applications. These type of systems are
characterised by their timing consistency and low variability when executing real-time applications.

In order to meet the specifications provided by real-time systems, RTOSs are required to accomplish
the following criteria:

• Minimal interrupt latency: RTOSs should decrease the number of cycles required for a pro-
cessor to respond an interrupt request.

• Minimal context switching latency: In a RTOS, the processor should take a reduced time to
store the state of a process or thread so that it can be restored and resume the execution
later.

This criteria was defined to favour predictability and low-latency, rather than amount of work done
in a given period of time (throughput); as RTOSs are more frequently dedicated to a narrow set
of applications rather than a wider specter of processes running simultaneously. These constraints
tend to redefine the scheduling algorithms employed in these type of systems.

Thus, the design philosophy of a RTOS values the consistency, predictability and performance of
the real time applications running in the OS.

In this Section we are to comment on the two most well known RTOSs, Zephyr and FreeRTOS.

30

Chapter 2. State of the Art

Zephyr is a scalable open-source RTOS optimised for resource-constrained devices and built
targeting a secure environment [32]. Zephyr offers a series of features that distinguish it between
other RTOSs, such as its multi-threading capabilities:

• Multi-threading Services: Zephyr kernel implements cooperative, priority-based, preemptive
and non-preemptive threads. These multi-threading capabilities can be employed through
the pthreads API.

• Interrupt Services: Enables compile-time registration of interrupt handlers.

• Memory Allocation Services: Zephyr supports dynamic allocation and freeing fixed or variable
size memory blocks.

• Inter-thread Synchronisation Services: Support binary, counting and mutex semaphores.

• Inter-thread Data Passing Services: For byte streams, basic and enhanced message queues.

• Power Management Services: Supports tickless idle between others.

Zephyr also implements various scheduling features that allow an application’s threads to share
the CPU. In short, the scheduler selects the highest priority thread to be the current thread, and
under conflicting situations the scheduler chooses the thread that has waited the most. Zephyr’s
code-base enables the end user to choose between different queuing strategies based on the needs
of the target applications:

• Simple linked-list ready queue: The ready queue consists of an unordered list, with fast
constant-time performance for single-threaded operations and very low code size.

• Red/black tree ready queue: The ready queue consists of a red/black tree, which offers slower
insertion and removal operations but an increased scalability towards many thousands of
threads. This scheduling policy is probably the worst candidate for the RTOS.

• Traditional multi-queue ready queue: In this queuing strategy the ready queue is implemented
as an array of lists, one per priority. It slightly improves the code size over the simple linked-
list policy and performs the computation in O(1) time in almost most of the circumstances.
On the other hand, it has a notable memory footprint to store the array of lists. This
algorithm is incompatible with several other features like deadline scheduling or SMP affinity.

Besides the offered queuing strategies, Zephyr’s scheduler also implements time slicing policies to
prevent thread starvation in its cooperative and preemptive scheduling modes (Figure 2.6).

31

Chapter 2. State of the Art

Th
re

ad
 P

rio
rit

y

Time

Low

High

Thread 1

ISR

Thread 2

Thread 1

ISR makes the high priority
Thread ready

Ready

Low priority thread relinquishes
the CPU

(a) Cooperative time slicing: The cooperative thread halts its execution from time to
time to permit other threads to execute.

Th
re

ad
 P

rio
rit

y

Time

Low

High

Thread 1 Thread 2

Time Slice

Thread 3 T1 T1

Thread 4

Preemption

Thread 2 Thread 3

Completion

(b) Preemptive time slicing: The scheduler divides time into a series of time slices, at
the end of every slice, preemptive thread get yielded to execute other ready threads of
the same priority.

Figure 2.6: Time Slicing policies (Images credit: The Zephyr Project).

Zephyr also implements Earliest deadline first (EDF), a scheduling algorithm employed in RTOSs,
in which each time a scheduling event takes place, a priority queue is searched to find the process
closest to its deadline in order to execute it next.

As we saw, Zephyr offers great flexibility in terms of scheduling choices favouring real time multi-
threading. However, it also provides great features in terms of security, making this operating
system suitable for use in critical systems. Some highlighted security features are the following:
stack-overflow protection, device driver permission tracking, thread isolation, etc.

32

Chapter 2. State of the Art

FreeRTOS is an open-sourced RTOS designed under specific size constraints to be able to run
in micro-controllers, although its use is not limited to the intended scope. In short, FreeRTOS
provides the following features:

• Multi-tasking: FreeRTOS structures each real time application as a set of independent tasks.
The real time scheduler should decide which task from a running application should execute
in a given point of time. The scheduler will swap tasks in and out as the application runs
(context switch).

• Timing primitives and callbacks: FreeRTOS provides software timers that allow to execute a
function later in time through a callback. The implementation of this feature in FreeRTOS
doesn’t consume processing time unless a timer expires, which is when the callback gets
executed.

• Memory allocation and heap memory management: FreeRTOS provides a very simple API
to create RTOS objects (tasks, queues, timers, semaphores...) using dynamically or statically
allocated RAM if defined explicitly. malloc and free are not always ideal to allocate dynamic
memory for a series of reasons: not thread safe, not time deterministic, often aren’t available
on embedded systems, etc. For that reason, FreeRTOS download includes five custom memory
allocation implementations scoped for different purposes:

– heap_1: The simplest, it doesn’t permit freeing memory.

– heap_2: Permits freeing memory but doesn’t coalescence adjacent free blocks.

– heap_3: Wraps the standard malloc and free for thread safety.

– heap_4: Like heap_2, but coalescences adjacent free block to avoid fragmentation.

– heap_5: As per heap_5 but spans the heap across multiple non-adjacent memory areas.

• Synchronisation primitives: FreeRTOS supports binary, counting, mutex and recursive mutex
semaphores.

• Inter-task communication: Stream and message buffers are designed to serve a task to task
and a interrupt to task communication. Unlike other RTOSs, FreeRTOS communication
primitives are optimised for single reader-writer scenarios. Stream buffers pass a continuous
stream of bytes, while message buffers work with variable sized discrete messages, employing
the stream buffers for data transfer. An intrinsic feature among FreeRTOS objects is that the
stream buffer assumes that there is only one task or interrupt that will write to the buffer,
and only one task or interrupt that will read from the buffer. Thus, its a single-producer,
single-consumer relationship.

Another form of communication found in FreeRTOS are Task Notifications. A direct to task
notification is an event sent explicitly to a task, rather than using an intermediary object.
These types of messages are scoped to change the state of the target task explicitly, i.e.:
blocking certain task until an arbitrary computation is completed, the task will only resume
its activity after it receives another notification changing its state.

33

Chapter 2. State of the Art

• Decoupled libraries: FreeRTOS also provides a collection of MIT licensed libraries available
for use with the kernel. These libraries can complement the kernel with specific features any
scoped application might need. We can find three types of libraries:

– FreeRTOS+: Provides connectivity and utility functionality suitable to connect Internet
Of Things (IoT) devices to the cloud.

– AWS IoT Libraries: Like FreeRTOS+ but oriented to Amazon Web Services.

– FreeRTOS Labs: Set of libraries that intend to improve the FreeRTOS environment
including features such as pthreads support, TCP IPv6 or FAT file-system support.

• Power saving: FreeRTOS supports a tickless idle mode that stops the periodic tick interrupt
when no application tasks are executing.

Regarding the scheduler, FreeRTOS supports two types of policies that can be selected simultane-
ously:

• Time Slicing Scheduling Policy (Round Robin): In this algorithm, all equal priority tasks get
to run in equal portions of CPU time.

• Fixed Priority Preemptive Scheduling: In this algorithm, the scheduler selects tasks according
to their priority. Low priority task will get executed only when there are no high priority
tasks in the ready state.

FreeRTOS provides also Memory Protection Unit (MPU) support on certain ARMv7 and ARMv8
cores, to enable robustness and security by creating the concept of privileged and unprivileged
mode, while also restricting access to resources such as RAM, executable code, peripherals and
memory beyond the limit of the task’s stack7.

For a complete list of the features of this operating system, the reader can refer to the FreeRTOS
reference manual [65].

2.2.2.2 Ada/SPARK

Ada is a flexible concurrent and distributed object-oriented language focused towards real-time and
embedded systems. It has been relevant in many different high-integrity areas (automotive, railway
and avionic domains) thanks to a number of factors that make it qualify for its use in real-time
systems [19]:

• Strong compile-time type checking.

• Native support for parallel programming.
7https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html

34

https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html

Chapter 2. State of the Art

• Real-time scheduling compliance.

• Safe object-oriented programming approach.

In this Section we are going to focus on the real-time parallelism capabilities of Ada, for that we
are going to display a very simplistic example of independent tasking:

1 type Vector is array (1..10_000) of Integer;
2 type Vector_Prt is access al lVector;
3 type Vector_Const is access constant Vector;
4

5 procedure Sumdif(A, B : Vector_Const;
6 Sum : Vector_Prt;
7 Diff : Vector_Prt);
8

9 procedure Sumdif(A, B : Vector_Const;
10 Sum : Vector_Prt;
11 Diff : Vector_Prt) is
12 task typ Minus;
13 task typePlus;
14 M : Minus;
15 P : Plus;
16

17 task body Minus is
18 begin
19 for I in Vector'Range loop
20 Diff(I) := A(I) - B(I);
21 end loop;
22 end Minus;
23

24 task body Plus is
25 begin
26 for I in Vector'Range loop
27 Sum(I) := A(I) + B(I);
28 end loop;
29 end Plus;
30 begin
31 null;
32 end Sumdif;

In the Listing above, extracted from [19], Sumdif calculates the sum and difference of two large
integer arrays. For that, the authors have set two tasks, so that the computation of the addition
and the subtraction can happen concurrently. In this very simple example, the tasks terminate
naturally and the procedure returns the values after all the tasks finish. With this example, we
have learned that Ada follows a tasking parallelism approach, where the programmer is in charge
of defining the tasks and managing their dependencies and synchronisation.

35

Chapter 2. State of the Art

However, the example doesn’t demonstrate the whole tasking capabilities of ADA. The language
supports task communication through data sharing and synchronisation mechanisms [67], such as
the following:

• Protected objects: Provides a secure mechanism to execute operations with mutually exclusive
access to certain encapsulated data. These objects contain a public and a private part: the
public part holds the procedures that interact with the encapsulated data, while the private
part comprises the encapsulated variables that must be mutually excluded.

• Protected entries: The protected entries use a read/write lock mechanism to access data
encapsulated within its protected object. To achieve object locking, each protected entry
contains a Boolean property called barrier. A task calling a protected entry with a False
barrier will be blocked until the barrier becomes True. Therefore, barriers get evaluated when
an entry is called for the first time and are reevaluated upon the completion of an entry or
the body of the procedure by some task. Protected entries can be employed to create many
concurrent synchronisation mechanisms, like barriers, semaphores or broadcasts.

• Pragmas Atomic and Volatile: The pragma atomic instructs the compiler to perform no
optimisations on a variable to ensure that it satisfies atomicity constraints (no temporary
copies). The volatile pragma ensures that reads and writes to the named variable go
directly to memory rather than to a possible copy that the compiler optimises into registers.

All these synchronisation mechanisms and much more can be found in Ada’s technical reference
manual [14].

As we mentioned in the introduction of this Section, the Ada compiler performs exhaustive type
checking to generate executable code, which justifies the verbosity of the language as it leaves almost
no room for end-user type errors, such as non-defined type conversions in C. For this reason, the
industry has leaned recently towards C and C++ for high criticality domains, as these languages
are more comfortable for the programmer. However, the adoption of these languages to many
high-integrity areas makes the certification of parallelism a challenge, as modern parallel APIs do
not adhere to the majority of certification guidelines required for use in the real-time domain (refer
to Section 2.2.2.3).

To ease the certification of real-time systems, SPARK - a formally analyzable subset of Ada
2012 - and toolset that brings mathematics-based confidence to software verification can be used.
SPARK is officially supported by AdaCore, a major compiler vendor for Ada. SPARK, as MISRA-
C [71], MISRA-C++ [70] and other widely used safety-critical coding standards, present a series of
rules that enable the certification of Ada programs for their use in critical systems. For example,
pointers cannot be used in the context of a SPARK program and there is a restricted use of dynamic
allocation.

36

Chapter 2. State of the Art

Besides restricting the use of the language, one of the biggest advantages of SPARK is that it
allows to ensure program correctness by providing contextual information like preconditions, post-
conditions, loop invariants, assertions, etc. This analytic phase makes SPARK a suitable selection
for very critical pieces of code, in which high-criticality and real time should be always ensured.
SPARK comes with a set of tools to cover this purpose [66]:

• GNAT Compiler: The GNAT compiler ensures conformance with all the Ada semantic-syntax
rules and generates executable code. The compiler can also generate machine code to check
any assertions while the program runs.

• GNATprove: GNATprove is the verification tool for SPARK. It can be run in three different
modes.

– Check: Ensures that only the SPARK subset is used within the Ada program.

– Flow: Performs an analysis that tracks the dependencies of data and subprograms.

– Proof: Performs a formal verification of the SPARK program, so that code that may
result in a run-time error (i.e.: divisions by zero) will be flagged.

• GNATtest: GNATtest is a tool based on AUnit that helps automate processes for developing
and managing test cases needed for verifying software systems. Test cases for GNATtest
may even be written directly in the Ada code. GNATtest also takes advantage of Ada 2012’s
contract-based programming features, including preconditions, postconditions and invariants.

However, proving all the software is very difficult and time consuming since the tools provided by
SPARK require guidance and sometimes code refactoring is needed to complete the process, which
makes development very slow and expensive. For that reason, there are different levels of assurance
that can be targeted with SPARK (Stone, Bronze, Silver, Gold, Platinum) [4], that can be applied
based on the software needs and project requirements. The cost of achieving higher SPARK level
is increasing towards Platinum, however it can provide much more confidence on the correctness of
the software.

2.2.2.3 Multicore Programming models for critical systems

As we mentioned in Section 2.1, multi-core platforms are now common across several critical do-
mains. This standardisation has allowed researchers to find solutions to exploit the parallelism
present on these platforms, with the objective of providing the performance requirements of ad-
vanced critical systems, e.g. autonomous driving. However, most of the standard parallelisation
programming models often present features that are against the principles of safety-critical systems:
dynamic allocation, poor reliability, lack of resiliency mechanisms, etc. As a result, functional safety
properties cannot be guaranteed. In this Section, we are going to explore parallel programming
models and solutions that qualify for safety critical environments.

37

Chapter 2. State of the Art

OpenMP is one of the most popular programming models to create parallel solutions, although
due to the implications commented above, it is an unpractical candidate for the use on critical
systems. Sara Royuela et al. propose a series of modifications to the specification, and a set of
requirements for the compiler and run-time systems that makes OpenMP qualify for safety critical
environments without compromising functional safety [81]. For that, the authors have identified
and classified the features that can compromise functional safety in OpenMP:

• Unspecified Behavior: These can be observed in programs that do not follow the OpenMP
specification, behaviors that are not defined by the specification (e.g., passing a negative
number to omp_set_num_threads), or in various situations encountered at runtime or compile
time, such as clauses that contain accesses out of the range of an array section.

• Deadlocks: OpenMP locking mechanism (master, critical, barrier, omp_set_lock and
omp_unset_lock) can all produce deadlocks if not employed correctly. For instance, omp_set_lock
and omp_unset_lock work in pairs, therefore a lock without a proper unlock, causes a dead-
lock situation. Synchronisation directives are also candidates for deadlocks, for example,
nesting various critical constructs with the same name. The use of untied tasks can pro-
duce deadlocks due to the ”non-restrictions” nature of the scheduler, these issues, however,
would not happen with tied tasks.

• Race Conditions: A race condition can be defined as a conflict in a concurrent execution
when multiple threads access the same data simultaneously and at least one of the threads
issues a write, causing nondeterminism in the data that gets read, as only a subset of threads
will retrieve the correct value (if any). Data races aren’t acceptable in safety-critical systems,
since they result in unpredictable behavior. The objective of a critical system is detecting
these data races to prevent false positives.

• Cancellations: OpenMP cancellation constructs enable the threads to jump out from a region
skipping part of its computation. These cancellations happen at cancellation points as they
require to be synchronous. This introduces non-determinism due to certain intrinsics with
the feature e.g. the behaviour of nested regions suitable of being canceled.

• Non-hazardous features to consider: Resiliency is crucial in safety-critical systems. However,
OpenMP doesn’t provide enough resilient measures to not compromise functional safety, for
example, OpenMP doesn’t specify how implementations should react if the user requests
more threads than the ones present in the platform. Nesting is another complex issue for
real-time systems, as the environment should create multiple parallel regions that can cause
data locality issues and cause the oversubscribing of system resources in low memory budget
situations.

38

Chapter 2. State of the Art

To tackle these problems, the authors have defined a series of rules that define how OpenMP
directives should be employed in order to comply with a functional safety critical paradigm. For
instance, the directive usage is proposed in order to prevent illegal nesting; in this directive the
user should specify the clauses and constructs employed in a parallel region, the compiler would
then restrict certain combinations of clauses that fall under the usage context.

There are other types of rules that prohibit certain expressions to be used in specific contexts, for
example: the clauses cancel and cancellation point should be only used in non-nested regions.

Data races are also in the list of relevant issues that should be sorted, for that, a new directive
called globals is proposed. This directive defines which data is used within a given scope while it
can be accessed concurrently from outside the scope producing a data-race. The directive would
be accompanied by different clauses based on the nature of the data: protected_read, read,
protected_write, write. read should be used when the global data is only read, and write
when the data is also written, the protected versions simply imply atomicity. By doing that, you
ensure that the run-time environment has information about how to protect the data.

1 #pragma omp usage any reduction(factorial)
2 #pragma omp globals write(factorial)
3 void fact(int N, int &factorial);
4

5 void fact(int N, int &factorial)
6 {
7 factorial = 1;
8 #pragma omp for reduction(*:factorial)
9 for(int i = 2; i <= N; ++i)

10 {
11 factorial *= i;
12 }
13 }

Listing 2.4: Function declaration and body using the extensions for safety-critical OpenMP.

An example of some of proposed the features mentioned above can be observed in Listing 2.4. In
order to explore the full list of proposals by the authors please refer to the cited paper.

Another relevant area of interest towards a safety-critical OpenMP is the scheduler. Most safety-
critical systems are based on static allocation strategies, while OpenMP implementations are based
on dynamic schedulers. However, sub-optimal compliant static allocation approaches have been
proposed to palliate this issue [68]. By implementing all of these, we can finally say that OpenMP
can qualify for the use in safety critical systems.

39

Chapter 2. State of the Art

The EMB2 is a multi-platform C/C++ library for the development of real-time parallel appli-
cations [82]. One of the key features of the library, is that, like OpenMP, relieves its users from
the burden of synchronisation and thread management. This makes the development of reliable
multi-core applications simpler.

The library provides basic parallel algorithms, concurrent data structures and skeletons for imple-
menting stream processing applications (see Figure 2.7).

Application

Dataflow Dataflow

Task management (MTAPI)

Dataflow

Base library (abstraction layer)

Operating system

Hardware

EMB2

Figure 2.7: EMB2 architecture. Original image credit: Siemens and Multicore Association.

EMB2 employs Multicore Task Management API (MTAPI), a standardised programming interface
for leveraging task parallelism in any kind of multi-core system [43]. The API provides a soft real-
time compliant low-overhead scheduler to distribute fine-grained tasks among the available cores
during run-time, accounting for task priorities and affinities, while offering scheduling strategies
based on minimal latency or fairness.

40

Chapter 2. State of the Art

MTAPI supports two types of programming models:

• Tasks: In this programming model, the developer decides where to deploy a task. The run-
time system chooses the executing core based on certain predefined API attributes. MTAPI
supports the following types of tasks:

– Single tasks: When this type of task is started, the corresponding code is only executed
once by the run-time environment.

– Multi-instance tasks: When these tasks are started, the run-time environment executes
the corresponding block multiple times in parallel.

– Multiple-implementation tasks/load balancing: When starting these tasks, the MTAPI
run-time system decides the executing resources to run the tasks based on the system
load.

• Queues: MTAPI enables the user to employ queues to control the task scheduling policies.
Users can define order and non-order preserving queues to determine the tasks’ execution
flow.

MTAPI can be implemented on bare metal, on top of an operating system, and also on top
of a hypervisor. EMB2 also supports intercommunication with CUDA and OpenCL employing
MTAPI.The provided multi-platform support makes it ideal for the use on critical systems, al-
though its API can produce very verbose programs on complex scenarios, as we can see below:

1 #define FIBONACCI_JOB 1
2

3 void fibonacciActionFunction(...) {
4 /* cast arguments to the desired type */
5 int n = *(int*)args;
6

7 ...
8

9 /* calculate */
10 if (n < 2) {
11 *result = n;
12 }
13 else {
14 /* first recursive call spawned as task (x = fib(n - 1);) */
15 int a = n - 1;
16 int x;
17 mtapi_task_hndl_t task = mtapi_task_start(..., fibJob, (void*)&a, sizeof(int),

(void*)&x, sizeof(int), ...);
18 /* second recursive call can be called directly (y = fib(n - 2);) */
19 int b = n - 2;
20 int y;
21 fibonacciActionFunction(&b, sizeof(int), &y, sizeof(int), ...);

41

Chapter 2. State of the Art

22 /* wait for completion */
23 mtapi_task_wait(task, MTAPI_INFINITE , &status);
24 /* add the two preceeding numbers */
25 *result = x + y;
26 }
27 }
28

29 static int fibonacci(int n) {
30 mtapi_status_t status;
31 mtapi_node_attributes_t node_attr;
32 mtapi_nodeattr_init(&node_attr , &status);
33 /* set node type to SMP */
34 mtapi_nodeattr_set(&node_attr , ..., &status);
35 /* initialize the node */
36 mtapi_info_t info;
37 mtapi_initialize(..., &node_attr , &info, &status);
38 /* create action */
39 mtapi_action_hndl_t fibAction;
40 fibAction = mtapi_action_create(FIBONACCI_JOB , (fibonacciActionFunction), ...);
41 /* get job */
42 mtapi_task_hndl_t task;
43 fibJob = mtapi_job_get(FIBONACCI_JOB , THIS_DOMAIN_ID , &status);
44 /* start task */
45 int result;
46 task = mtapi_task_start(..., fibJob, (void*)&n, sizeof(int), (void*)&result,

sizeof(int), ...);
47 /* wait for task completion */
48 mtapi_task_wait(task, MTAPI_INFINITE , &status);
49 /* delete action */
50 mtapi_action_delete(fibAction , 100, &status);
51 /* finalize the node */
52 mtapi_finalize(&status);
53 return result;
54 }

Listing 2.5: Fibonacci sequence computed using MTAPI primitives.

Listing 2.5 showcases the Fibonacci sequence computed using MTAPI, in the example, we can
find an increased number of lines of code compared with its sequential version. However, the
algorithms library included in EMB2 partially palliates this issue. Following next, we display a
reduction example employing MTAPI’s algorithms library:

1 vector<int> range(SIZE);
2 for (int i = 0; i < SIZE; i++) {
3 range[i] = i + 1;
4 }
5 using embb::algorithms::Reduce;
6 int sum = Reduce(range.begin(), range.end(), 0, std::plus<int>());

Listing 2.6: Vector reduction using MTAPI Reduction primitive.

42

Chapter 2. State of the Art

In Listing 2.6 the Reduce primitive from the algorithms library of MTAPI is employed to add
all the elements present in the range vector. This library compiles the most frequent primitives
present in parallel applications, which reduces considerably the verbosity of MTAPI programs.

For further details about MTAPI, please refer to its reference card [13].

2.3 GPU Compute Processing Methodologies

GPU computing has become increasingly widespread over the last decade. The paradigm has
been capable to demonstrate its ability to accelerate certain problems with results several orders of
magnitude faster than CPUs at the same cost. This is due to the design nature of GPUs, in short, if
we were to compare the purpose of a CPU with that of a GPU, we would say that multicore CPUs
are capable of solving a few heavy problems simultaneously, while GPUs are capable of solving
many simple problems at once.

L2 Cache

DRAM

Core
L1 Cache

Core
L1 Cache

Core
L1 Cache

Core
L1 Cache

L2 Cache

L3 Cache

C
ontrol

C
ontrol

C
ontrol

C
ontrol

(a) CPU architecture overview.

DRAM

L2 Cache

(b) GPU architecture overview.

Figure 2.8: CPU and GPU architecture comparison. Original images credit: NVIDIA.

In Figure 2.8 we can find the architectural differences between a CPU and a GPU [55]. This
difference in capabilities exists because they are designed with different goals in mind:

• CPUs follow a latency-oriented design, in which the main objective is to execute, given a
time frame, as many instructions as possible in a single thread; nevertheless, the number of
cycles to process one instruction may vary depending on the case.

• GPUs on the other hand, follow a throughput-oriented design, where the goal is to
minimise the total throughput of the system, rather than minimising the latencies of all the
individual threads they dispose.

43

Chapter 2. State of the Art

For that reason, we can find that GPUs are highly parallel devices, since they dispose a very high
number of ”simple” threads capable to perform simpler operations. Figure 2.9 below displays an
example of the level of parallelism between the GPU and the CPU.

Workload

Core 0 Core 1 Core 2 Core 3

CPU

(a) Multi-core CPU workload distribution.

Grid
Block 0 Block 1

...

...

Workload

GPU

Thread

(b) GPU workload distribution.

Figure 2.9: CPU and GPU workload distribution strategy.

Initially, the design of the GPU was driven solely by the need to handle graphics efficiently. However,
with the emergence of the first GPUs, the scientific community became aware of the high level of
parallelism that the device could offer. As a result, over the years, GPUs have adapted their design
towards a more general purpose computing oriented architecture, and thus programming models
oriented to GPU computing started to emerge. Section 2.3.1 revises the introduction of the GPU
into the scientific computing community and shows some of the most relevant general purpose
programming models on GPUs.

The critical system domain also started to get interested in GPU computing. Not only because of
the throughput capabilities, but also by the fact that the use of accelerators enable offloading work
from the CPU. However, it is well known that the critical markets (automotive, railway, avionics,
etc.) require system safety certification, that is why streamlined certified APIs can significantly
reduce certification costs. Section 2.3.2 describes some safety critical graphics APIs that emerged
to cover these needs.

2.3.1 General purpose programming models

As we mentioned in Section 2.3, the use of GPUs to speedup problems has become popular since
the beginning of the 21st century. Thus, a new paradigm was created, General-purpose computing
on graphics processing units (GPGPU), which consists on using the GPU, typically employed for
computer graphics, to perform computation traditionally handled by the CPU.

GPGPU became more relevant around 2003, specially after the inclusion of floating point color
buffers and programmable shaders on graphics processors, which eased the port of CPU algorithms

44

Chapter 2. State of the Art

to the graphics unit [69]. The inclusion of these features were encouraged by the video game
industry to enable better effects and graphics in video games. However, the scientific computing
community was already aware of some of the benefits that graphics computing could bring with the
new hardware. Some of the early jobs in the domain demonstrated the capability of the graphics
processor to solve traditional CPU problems, like the matrix multiplication algorithm presented in
ACM in 2001 [62]. However, it wasn’t until 2005, with the LU factorisation, that a GPU version
of a program ran faster than a CPU optimised implementation [41].

These early contributions to the GPGPU paradigm required employing graphics primitives to
be able to do compute in the GPU, which required to reformulate traditional CPU problems in
these terms. This process was time consuming and complicated, making the development of GPU
applications a tedious task. The two major APIs used to perform GPU compute were OpenGL and
DirectX, which were specifically designed for rendering purposes.

The convoluted efforts needed to translate applications for GPGPU and the recent rise of popular-
ity of GPUs in the computing community, resulted in the creation of high level APIs, that allowed
developers to abstract from the underlying primitives present in graphics programming over more
common high-performance computing concepts [23] [30]. Some of the high level abstractions that
emerged in favor of GPU computing are the following: Section 2.3.1.1 explains CUDA’s program-
ming model. Section 2.3.1.2 reviews Apple/Khronos OpenCL graphics compute API. And finally,
Section 2.3.1.3, 2.3.1.4 and 2.3.1.5 provide, respectively, some specification details about OpenACC,
OpenMP-GPU and OmpSs-GPU.

2.3.1.1 CUDA

CUDA is a GPGPU platform and programming model that employs the parallel compute engine in
NVIDIA GPUs to enable developers to program readable compute code that runs in the graphics
unit8. The following table illustrates, to date, the most used languages, APIs and directives-based
approaches supported in CUDA:

GPU Computing Applications
Libraries and Middleware

cuDNN
TensorRT

cuFFT
cuBLAS
cuRAND
cuSPARSE

CULA
MAGMA

Thrust
NPP

VSIPL
SVM
OpenCurrent

PhysX
OptiX
iRay

MATLAB
Mathematica

Programming Languages

C C++ Fortran
Java
Python
Wrappers

DirectCompute
Directives
(e.g. OpenACC)

8https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

45

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Chapter 2. State of the Art

Besides the wide programmability offered by the platform, CUDA is only supported in certain
NVIDIA devices, ranging from the embedded to the data center domain9.

CUDA programming model can be summarised in four main concepts:

• Kernels: A kernel is a user defined function, that, when called, gets executed N times in
parallel by the N CUDA threads specified in the kernel call.

• Hierarchy of thread groups: Each CUDA thread is identified within a block with a three
dimensional id vector. All the threads of a block are expected to reside on the same pro-
cessor and share the memory resources of that core. Finally, blocks are contained in a three
dimensional grid of thread-blocks. This hierarchy can be seen in Figure 2.9.

• Memory hierarchy: Each thread has private local memory. Each block has shared memory
visible to all threads of the block. All threads can access to the same global memory.

• Heterogeneous programming: The CUDA threads execute on the GPU, a physically separated
device from the main CPU host. Both the host and the device have their own memory space in
DRAM, referred to as host memory and device memory. CUDA runtime provides an interface
to transfer data between both memory spaces. A common CUDA program execution flow
can be seen in Figure 2.10.

C Program
Sequential
Execution

Serial code Host

Parallel kernel
kernel0<<<>>>()

Device
Grid

Block 0 Block 1

...

...

Serial code Host

Parallel kernel
kernel1<<<>>>()

Device
Grid

Block 0 Block 1

...

...

Figure 2.10: CUDA program execution flow. Original image credit: NVIDIA.

9https://developer.nvidia.com/cuda-gpus

46

https://developer.nvidia.com/cuda-gpus

Chapter 2. State of the Art

The CUDA runtime provides C and C++ functions that execute on the host to allocate device
memory, transfer data and manage the execution flow of the multiple defined kernels. For this
thesis we are going to employ a VectorSum example to review some of the most relevant features
of the environment:

1 // Device code
2 __global__ void VectorSum(float* A, float* B, float* C, int N)
3 {
4 int i = blockDim.x * blockIdx.x + threadIdx.x;
5 if (i < N)
6 C[i] = A[i] + B[i];
7 }
8

9 // Host code
10 int main()
11 {
12 // Allocate and initialize host input vectors h_A and h_B
13 ...
14

15 // Allocate vectors in device memory
16 float *d_A, *d_B, *d_C;
17 cudaMalloc(&d_A, size);
18 cudaMalloc(&d_B, size);
19 cudaMalloc(&d_C, size);
20

21 // Copy vectors from host memory to device memory
22 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
23 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
24

25 // Invoke kernel
26 int threadsPerBlock = 256;
27 int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
28 VectorSum <<<blocksPerGrid , threadsPerBlock >>>(d_A, d_B, d_C, N);
29

30 // Copy result from device memory to host memory
31 // h_C contains the result in host memory
32 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
33

34 // Free device memory
35 cudaFree(d_A);
36 cudaFree(d_B);
37 cudaFree(d_C);
38

39 // Free host memory
40 ...
41 }

Listing 2.7: VectorSum sample in CUDA.

47

Chapter 2. State of the Art

In Listing 2.7 we find some representative functions of the CUDA runtime environment, which we
describe below:

• cudaMalloc(void** devPtr, size_t size): Allocates size bytes of linear memory on the
device and returns in *devPtr a pointer to the allocated memory.

• cudaMemcpy(void* dst, const void* src, size_t count, cudaMemcpyKind kind): Copies
count bytes from the memory area pointed to by src to the memory area pointed to by dst,
where kind specifies the direction of the copy (device to host, host to device, device to device).

• cudaFree(void* devPtr): Frees the memory space pointed to by devPtr, which must have
been returned by a previous call to cudaMalloc().

CUDA also introduces a number of C++ extensions such as the function execution space specifiers,
which denote the execution and callable space of a given function:

• __global__: Specifies the given function as a kernel, executed on the device and callable
from the host and device on some target platforms.

• __device__: Specifies that a function is executed on the device and callable only from the
device.

• __host__: Specifies that a function is executed on the host and callable only from the host.

In the previous example, the __global__ specifier in the VectorSum function qualifies it as a kernel,
which can be executed from the host using the following expression:

Func<<<Dg, Db, Ns, S>>>(params)

Where the name of the function, number and type of the parameters should match the ones defined
in the kernel definition.

Any call to a __global__ function must specify the execution configuration for said call, which is
what Dg, Db, Ns and S represent in the code snippet above:

• Dg: Number of blocks launched.

• Db: Number of threads per block.

• Ns (Optional, defaults to 0): Number of bytes per block to allocate for shared memory.

• S (Optional, defaults to 0): Specifies the associated stream with this kernel launch.

This summarises all the CUDA primitives found in Listing 2.7. A complete description of the
runtime can be found in the CUDA API reference manual [74].

48

Chapter 2. State of the Art

2.3.1.2 OpenCL

OpenCL is and open standard parallel programming model targeted to heterogeneous systems.
Unlike CUDA, OpenCL is cross-platform, which means that can be found in multiple devices from
different vendors, such as AMD, NVIDIA or Xilinx. OpenCL targets diverse accelerators found in
supercomputers, cloud servers, personal computers, mobile devices and embedded platforms.

OpenCL defines OpenCL C, a C-like programming language used to write compute kernels. Besides
that, it also defines an API to manage the device memory and launch the different kernels defined
in the OpenCL C language. The standard is supported in the following languages and platforms:

GPU Computing Applications
Libraries and Middleware

DeepCL

clFFT
clBLAS
clSpMV
libCL

ViennaCL
VOBLA

clMAGMA

clpp
M3

VSI/Pro
Bullet Physics

ASL
MatCL

OpenCLLink

Programming Languages
Native support Third-party support

C C++ CLFORTRAN
PyOpenCL

Perl Wrappers

Java
.NET
Perl

Table 2.3: List of some of the platforms, languages and libraries that support OpenCL acceleration.
An updated list can be found in [52].

Similar to CUDA, OpenCL programming model can be divided into the following points:

• Kernels and Host program: OpenCL defines two distinct units of execution: a host program
that executes on the host and the kernels that execute on one or more OpenCL devices.

• Hierarchy of work groups: In OpenCL, the kernels are where the ”work” of a given computa-
tion occurs. This work takes place through work-items that execute in groups. At the same
time, multiple work-groups can execute in parallel.

• Memory hierarchy: The memory model defines how the values in memory are seen by the
different units of execution. OpenCL leaves this responsibility to the programmer implement-
ing: memory regions visible to the host and the devices that share a context, memory objects
defined by OpenCL API, shared virtual memory between the host and the devices, and a
consistency model to control atomicity and fencing in read-write conflict situations.

• Heterogeneous programming: The OpenCL API enables the host to interact with the device
through a command-queue the following message types: kernel-enqueue, memory commands
to transfer data between contexts, and synchronization commands (see Figure 2.11).

49

Chapter 2. State of the Art

Figure 2.11: OpenCL program execution flow. Image credit: Khronos Group.

The previous Figure defines the execution states of a given kernel and the transitions between them,
which is what defines the execution model of OpenCL. Following next we display a VectorSum
example to review some of the features of the programming model of OpenCL:

1 // Device code
2 const char *kernelSource = "\n"\
3 "__kernel void VectorSum(__global int* A, __global int* B, __global int* C, int N)\n"\
4 "{ \n"\
5 " int i = get_global_id(0); \n"\
6 " if (i < N) \n"\
7 " C[i] = A[i] + B[i]; \n"\
8 "} \n";
9

10 // Host code
11 int main()
12 {
13 // Allocate and initialize host vectors h_A, h_B, h_C
14 ...
15

16 // Create the compute kernel in our program
17 cl_platform_id cpPlatform;
18 cl_device_id device_id;
19 clGetPlatformIDs(1, &cpPlatform , NULL);
20 clGetDeviceIDs(cpPlatform , CL_DEVICE_TYPE_GPU , 1, &device_id , NULL);
21 cl_context context = clCreateContext(0, 1, &device_id , NULL, NULL, &err);
22 cl_command_queue queue = clCreateCommandQueue(context, device_id , 0, &err);

50

Chapter 2. State of the Art

23 cl_program program = clCreateProgramWithSource(context, 1, (const char **) &
kernelSource , NULL, &err);

24 clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
25 cl_kernel kernel = clCreateKernel(program, "vecAdd", &err);
26

27 // Allocate vectors in device memory
28 float *d_A, *d_B, *d_C;
29 d_A = clCreateBuffer(context, CL_MEM_READ_ONLY , bytes, NULL, NULL);
30 d_B = clCreateBuffer(context, CL_MEM_READ_ONLY , bytes, NULL, NULL);
31 d_C = clCreateBuffer(context, CL_MEM_WRITE_ONLY , bytes, NULL, NULL);
32

33 // Copy vectors from host memory to device memory
34 clEnqueueWriteBuffer(queue, d_A, CL_TRUE, 0, bytes, h_A, 0, NULL, NULL);
35 clEnqueueWriteBuffer(queue, d_B, CL_TRUE, 0, bytes, h_B, 0, NULL, NULL);
36

37 // Set the arguments to our compute kernel
38 clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
39 clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_B);
40 clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_C);
41 clSetKernelArg(kernel, 3, sizeof(unsigned int), &n);
42

43 // Execute the kernel
44 int localSize = 64;
45 int globalSize = ceil(n/(float)localSize)*localSize;
46 clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &globalSize , &localSize , 0, NULL,

NULL);
47

48 // Wait for the command queue to get serviced before reading back results
49 clFinish(queue);
50

51 // Copy result from device memory to host memory
52 // h_C contains the result in host memory
53 clEnqueueReadBuffer(queue, d_C, CL_TRUE, 0, bytes, h_C, 0, NULL, NULL);
54

55 // Free device memory
56 clReleaseMemObject(d_a);
57 clReleaseMemObject(d_b);
58 clReleaseMemObject(d_c);
59

60 // Release rest of resources
61 clReleaseProgram(program);
62 clReleaseKernel(kernel);
63 clReleaseCommandQueue(queue);
64 clReleaseContext(context);
65

66 // Free host memory
67 ...
68 }

Listing 2.8: VectorSum sample in OpenCL.

51

Chapter 2. State of the Art

By comparing the samples provided in Listing 2.7 and 2.8, we find that OpenCL is more lengthy
and verbose than CUDA, partially caused by the OpenCL C factor. In the example above we saw
different functions to build and manage the execution of the kernels written in OpenCL C. Next,
we are going to provide a short description of each of the elements of the OpenCL API found in
the above Listing:

• cl_platform_id: Identifies a platform, which consists of one host plus one or more compute
devices, it can get retrieved with clGetPlatformIDs.

• cl_device_id: Identifies a compute device within a platform, can get retrieved with clGetDeviceIDs.

• cl_context: Represents an OpenCL context created with clCreateContext. A context is
the environment within which the kernels execute and the domain in which synchronization
and memory management get defined.

• cl_command_queue: Identifies a command queue and can be created using the clCreateCommandQueue
function.

• cl_program: Indentifies a OpenCL C program. A source code should be loaded into the
program object with the clCreateProgramWithSource function and then compiled with
clBuildProgram.

• cl_kernel: Represents a compute kernel within the program object. The kernel should be
specified with the kernel or __kernel keyword. Can be defined with clCreateKernel.

We can also find memory management directives:

• clCreateBuffer(cl_context context, cl_mem_flags flags, size_t size,
void *host_ptr, cl_int *errcode_ret): Similar to an allocation, this function creates a
buffer object of size bytes. clCreateBuffer returns the pointer to the device buffer data,
which can be used for issuing commands onto the related command queue.

• clEnqueueWriteBuffer(cl_command_queue command_queue, cl_mem buffer,
cl_bool blocking_write, size_t offset, size_t cb, const void *ptr,
cl_uint num_events_in_wait_list, const cl_event *event_wait_list, cl_event *event):
Enqueues commands to write to a buffer object from host memory. command_queue refers to
the command-queue in which the command will be issued. buffer refers to a valid buffer
object present in the device. It writes cb bytes of data from the host buffer ptr to the device
buffer buffer.

• clReleaseMemObject(cl_mem memobj): Decreaments the memory object reference count by
freeing memobj.

52

Chapter 2. State of the Art

In OpenCL C, the __kernel or kernel specifier qualifies a function as a kernel. Kernels can be
configured, executed and managed through the following functions:

• clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void
*arg_value): Used to set the argument value for a specific argument of a kernel.

• clEnqueueNDRangeKernel(cl_command_queue command_queue, cl_kernel kernel, cl_uint
work_dim, const size_t *global_work_offset, const size_t *global_work_size, const
size_t *local_work_size, cl_uint num_events_in_wait_list,
const cl_event *event_wait_list, cl_event *event): Enqueues a command to execute
a kernel on a device.

• clFinish(cl_command_queue command_queue): Blocks until all the queued OpenCL com-
mands in the command-queue specified are issued to the associated device and have completed.

A further description of the OpenCL API can be found in the Khronos OpenCL Registry [44].

2.3.1.3 OpenACC

OpenACC is a directive-based parallel programming model designed to ease the portability of code
to a wide-variety of heterogeneous HPC platforms [76].

The execution model presented by OpenACC consists on using any parallel device present in the
system, such as a GPU or a multi-core CPU, to accelerate problems simply using directives. Ope-
nACC presents three levels of parallelism:

• gang: Coarse-grain parallelism. An accelerator can launch a number of gangs.

• worker : Each gang has one or more workers. Defines a fine-grained parallelism.

• vector : Represents the SIMD or vector operations within each worker.

OpenACC manages gang partitioning based on direct code analysis, where when the program
reaches a loop, iterations are divided across gangs for parallel execution. The workload of each
gang can be distributed among its associated workers based on the allocated resources. At the
same time, it is also possible to define a finer level of parallelism with vector partitioning.

Since memory in an accelerator may be discrete from host memory, OpenACC handles all data
movement between the host and the device using Direct Memory Access (DMA) transfers through
the host thread. Similarly, the accelerator may not be able to read or write to the host memory.

53

Chapter 2. State of the Art

Like in OpenMP and other directive based APIs, OpenACC employs macros to specify directives
in all its supported languages: C, C++ and Fortran. For example, in C and C++ all OpenACC
sections must be scoped with the #pragma acc keywords.

OpenACC provides heterogeneity by introducing the device_type clause. This clause determines
in which devices the subsequent directives in the macro should execute, for example:

#pragma acc loop gang device_type(foo) worker

In this directive, worker is a device-specific clause that should be executed on foo, while the rest
of the directive can be executed on any device, including foo. device_type may also contain an
asterisk, to indicate that the subsequent clauses can be executed in all device types that are not
named in any other device_type clause in that macro.

Following next, we are going to list a series of compute constructs that are going to determine how
the scoped code in the directives is going to execute:

• #pragma acc parallel [clause-list]: One or more gangs of workers are creaed to execute the
accelerator parallel region.

• #pragma acc serial [clause-list]: The behaviour is equivalent with the parallel construct
except that it always executes with a single gang of a single worker with a vector length of
one.

• #pragma acc kernels [clause-list]: The compiler will create a series of kernels for the scoped
code based on the encountered nesting. These kernels will launch in order on the specified
device.

• #pragma acc loop [clause-list]: When a loop construct is encountered, it is partitioned and
executed on the target device following the type of parallelism defined in its clauses.

Each of these constructs support a series of clauses that can be consulted in OpenACC’s specification
[2], following next we list some of the most relevant ones:

• if [condition]: The region will execute on the current device only If the condition inside the
if clause evaluates to true.

• wait [wait-argument]: When this clause appears in the directive, the current computing
activity will wait for the completion of asynchronous operations.

• reduction(op:var-list): Specifies a reduction operator for one or more vars. For a further
explanation on reductions, please refer to Section 2.2.1.2.

54

Chapter 2. State of the Art

• copyin, copyout, copy: These clauses handle the data dependencies of the scoped regions.
Variables within the copyin clause will be transferred to the specified device. Variables within
the copyout clause will be transferred from the device to the host. Finally, variables within
the copy clause will be copied and retrieved from the device once the computation is done.

OpenACC and other directive based APIs offer a simple solution to perform computation with
minimal effort by simply annotating sequential code. To demonstrate this in OpenACC, we display
a VectorSum example in Listing 2.9:

1 #pragma acc kernels copyin(A[0:size],B[0:size]), copyout(C[0:size])
2 for(int i=0; i<size; i++) {
3 C[i] = A[i] + B[i];
4 }

Listing 2.9: VectorSum sample in OpenACC.

The above listing creates a kernel to perform the loop computation, in its clause we can see how it
inputs and outputs the appropriate variables to the device. Therefore, we can find that one of the
greatest features of OpenACC is creating GPU code adding barely a line of code.

However, this simplicity comes at the cost of a decreased performance if we compare the speedup
between a program annotated with OpenACC pragmas with a program wrote directly in GPGPU
low level code (CUDA, OpenCL) [49]. In addition, the macros can become very verbose when
dealing with specific types of parallelisation and dependencies:

1 #pragma acc parallel loop present(row_offsets ,cols,Acoefs,xcoefs,ycoefs) \
2 device_type(nvidia) vector_length(32) gang worker num_workers(32)
3 for(int i=0;i<num_rows;i++) {
4 double sum=0;
5 int row_start=row_offsets[i];
6 int row_end=row_offsets[i+1];
7 #pragma acc loop reduction(+:sum) device_type(nvidia) vector
8 for(int j=row_start;j<row_end;j++) {
9 unsigned int Acol=cols[j];

10 double Acoef=Acoefs[j];
11 double xcoef=xcoefs[Acol];
12 sum+=Acoef*xcoef;
13 }
14 ycoefs[i]=sum;
15 }

Listing 2.10: Macro verbosity example in OpenACC.

As we can see in Listing 2.10, OpenACC allows the end user to create more advanced solutions
to accelerate computation. However, most of the time these solutions require understanding the
intrinsics of the target platform, so writing device specific code directly could be more beneficial
and accessible to the programmer.

55

Chapter 2. State of the Art

2.3.1.4 OpenMP GPU

We saw in Section 2.2.1.2 how OpenMP can be used to accelerate problems in many-core systems.
However, since version 4.0, the specification provided a set of directives to offload blocks of code to
a device (GPU, FPGA, etc.).

For that, OpenMP introduced the target construct, which maps the specified variables to a device
data environment and executes the construct on the device10:

#pragma omp target [clauses]

Following next, Listing 2.11 displays a matrix multiplication code using the target construct that
runs in the GPU:

1 #define pA(i,j) (pA[((i)*N) + (j)])
2 #define pB(i,j) (pB[((i)*N) + (j)])
3 #define pC(i,j) (pC[((i)*N) + (j)])
4

5 ...
6

7 #pragma omp target data map (to: pA[0:N*N],pB[0:N*N]) \
8 map (tofrom: pC[0:N*N])
9 #pragma omp target teams distribute \

10 parallel for collapse(2) private(i,j,k)
11 for(i=0;i<N;i++) {
12 for(j=0;j<N;j++) {
13 for(k=0;k<N;k++) {
14 pC(i,j)+=pA(i,k)*pB(k,j);
15 }
16 }
17 }

Listing 2.11: Matrix multiplication offloaded to GPU using OpenMP pragma.

According to a study published by IBM [72], offloading the computation performed in the previous
code to the GPU clearly gives performance benefits for bigger matrices. All of that, just adding
barely two lines of code.

Another experiment performed by [64], shows how GPU offloading can be several orders of magni-
tude faster than a serial implementation for the LULESH benchmark [54]. In this case, the authors
of this work employed a Pascal P100 CPU and two Power8 CPUs running at a frequency of 4GHz
(a bar-chart comparison can be found in Figure 2.12).

10https://www.openmp.org/spec-html/5.0/openmpsu60.html

56

https://www.openmp.org/spec-html/5.0/openmpsu60.html

Chapter 2. State of the Art

Figure 2.12: LULESH – Speedup Over Serial (Higher is Better). Image credit: [64].

However, besides the theoretical simplicity to benefit from the use of an accelerator in OpenMP,
it is required that the compiler running in the target platform supports this feature. To date, not
many built-in compilers support these offloading directives without explicit changes to their build
scripts11.

2.3.1.5 OmpSs GPU

In Section 2.2.1.3, we studied the OmpSs programming model and we mentioned the heterogeneity
aspect of it. In this Section we are going to explore the target construct, which brings heterogeneity
to the platform.

OmpSs, provides heterogeneity by adding the target construct. The functionality of this construct is
to specify the series of devices that can run a given element. As some of the other constructs studied
previously, this construct can be applied over task constructs, function definitions or function
headers. The syntax of the construct is the following:

#pragma omp target [clauses]

The valid clauses for the target construct are the following:

• device(target-device): It allows the programmer to specify the devices that should be
targeting the construct. OmpSs supports CUDA, OpenCL and SMP. If no device is provided
then SMP is assumed.

11https://kristerw.blogspot.com/2017/04/building-gcc-with-support-for-nvidia.html

57

https://kristerw.blogspot.com/2017/04/building-gcc-with-support-for-nvidia.html

Chapter 2. State of the Art

• copy_in(list-of-variables): It specifies that a set of data should be transferred to the
device before the associated code gets executed.

• copy_out(list-of-variables): It specifies the set of data that should be transferred back
to the host after the execution in the device.

• copy_inout(list-of-variables): It specifies that the set of data should be transferred to
the device before running the associated code block and then retrieved back to the host.

• copy_deps: If this clause is set, the dependence clauses will copy semantics (i.e., in will also
be considered copy_in and output copy_out).

• implements(function-name): The function provided in the clause is an alternate implemen-
tation of the associated code block for the target devices. OmpSs will ensure that the device
is capable to run the alternate function.

• ndrange(n, G1,…, Gn, L1,…,Ln): Sets the thread hierarchy used to run the associated
kernel (or code block). In a two dimensional scenario, the ndrange clause contains five
parameters: The first one is the number of dimensions of the kernel. The second and third
one is the number of threads to be launched per dimension. And finally, the fourth and fifth
ones are the group size per dimension.

• shmem(size_t): Specifies the amount of memory the runtime will allocate for CUDA and
OpenCL kernels.

• file(file_name): For OpenCL kernels, specifies the file that contains the program object
to load the kernel.

In the following we display a VectorSum example using OmpSs CUDA:

1 /* cuda-kernels.cu */
2 extern "C" { // We specify extern "C" because we will call them from a C code
3

4 __global__ void VectorSum(float* A, float* B, float* C, int N)
5 {
6 int i = blockDim.x * blockIdx.x + threadIdx.x;
7 if (i < N)
8 {
9 C[i] = A[i] + B[i];

10 }
11 }
12

13 } /* extern "C" */

Considering the above CUDA kernel, we can use it in an OmpSs using the target construct:

58

Chapter 2. State of the Art

1 #pragma omp target device(cuda) copy_deps ndrange(1, N, 1)
2 #pragma omp task in(A[0 : N-1], B[0 : N-1]) out(C[0 : N-1])
3 __global__ void VectorSum(float* A, float* B, float* C, int N)
4

5 // Host code
6 int main()
7 {
8 // Allocate and initialize host input vectors h_A and h_B
9 ...

10

11 VectorSum(h_A, h_B, h_C, N);
12

13 #pragma omp taskwait
14

15 }

Listing 2.12: VectorSum sample in OmpSs CUDA.

As we can see in Listing 2.12, OmpSs abstracts the programmer from the memory management of
CUDA or OpenCL, which makes the whole process of GPU programming less error prone.

2.3.2 Programming models for critical systems

As we have seen in the introduction of this Section, GPUs can provide an increased computational
power due to their massively parallel architecture.

Modern automotive, railway and aerospace systems are exploring GPU solutions to meet their
demand for computational power, however all the programming models employed in the critical
domain are required to be amenable for software certification, thus ensuring functional safety. Low
level programming models, such as those seen in Section 2.3.1, offer programmability on these
devices, however, their software certification goes against safety standards, such as MISRA C [71].

In addition, CUDA and OpenCL as well as similar programming models, are not supported on
many low-end devices, which also justifies the urgent need to find alternative solutions for high-
criticality systems. In this Section we explore solutions based on safety critical graphics APIs,
specifically we will cover OpenGL SC 2 in Section 2.3.2.1, then Section 2.3.2.2 introduces Brook
Auto, followed by Section 2.3.2.3, in which we will explore Vulkan SC.

2.3.2.1 OpenGL SC 2

OpenGL SC 2.0 is a Safety Critical graphics API oriented towards safety critical markets, including
railway, avionics and automotive, between others. The specification of the API is complementary
to the design guidelines defined by the Khronos Safety Critical Advisory Forum (KSCAF), which
provides interop API standards for safety critical systems.

59

Chapter 2. State of the Art

OpenGL SC 2.0 is in essence a subset of OpenGL ES 2.0 [45] functionality, aided to the safety
critical domain. The API provides OpenGL Shading Language (GLSL) shader programmability
complying with stringent safety standards for avionics and automotive systems, including FAA
DO-178C, EASA ED-12C Level A, and ISO 26262. The fact that OpenGL SC 2.0 is a subset of
OpenGL ES 2.0 makes that all the programs created in OpenGL SC 2.0 can be run in OpenGL ES
2.0, but not the other way around. However, the offered compatibility makes the API definition
and header not to be MISRA-C compliant.

OpenGL ES 2.0 capabilities are supported by any current embedded or desktop GPU, meaning
that OpenGL SC 2.0 can be functionally emulated on top of any device that supports OpenGL ES
2.0 by simply including OpenGL SC 2.0 Khronos headers. This makes the development of OpenGL
SC 2.0 applications possible in every single GPU platform.

The wide availability and support of the standard in most existing GPU devices makes OpenGL
ES 2.0 a perfect candidate to create portable applications capable to run in any system with a
GPU, including those that do not support GPGPU oriented APIs, such as CUDA or OpenCL.
Thus, OpenGL shading capabilities can shape with extra effort a universal general purpose GPU
programming model which might provide benefits towards the standardisation of parallel code on
GPU devices. However, OpenGL ES 2.0 presents a series of challenges in order to perform general
purpose computations [86], following next we present the most representative ones:

• OpenGL ES 2.0 doesn’t support compute shaders, therefore the GPGPU computations should
to be done either in the vertex or the fragment shader (or both). The required parameters
are passed through to the fragment shader as OpenGL varyings.

• OpenGL ES 2.0 only supports single byte format for texture values (RGBA). Thus, a mech-
anism to represent 32-bit floating point and other numerical formats is needed.

• Similar to the previous point, it is also required a mechanism to encode the shader computing
output in a format other than normalised byte values.

• A fragment shader cannot output more than one array, therefore if we need to return multiple
arrays, we would need multiple fragment shaders.

• Atomic counters aren’t natively supported in OpenGL ES 2.0.

OpenGL ES 2.0 GPGPU workflow requires the programmer to understand the different rendering
stages of the API to create simple kernels. The framework can result verbose and difficult to use as
it doesn’t provide any high level abstraction layer to develop GPGPU applications. For example:
algorithms that require certain kind of atomicity can become difficult to read and maintain, since
the programmer must handle the atomicity in multiple rendering passes explicitly.

Following next, we display a VectorSum kernel using a wrapped OpenGL SC 2.0 version:

60

Chapter 2. State of the Art

1 precision highp float;
2 varying vec2 v_texCoord;
3 uniform sampler2D s_texture;
4 uniform sampler2D s_texture2;
5

6 ...
7

8 void main()
9 {

10 highp float reconstructed_A;
11 highp float reconstructed_B;
12 highp float sum_result;
13

14 reconstruct(reconstructed_A , s_texture , v_texCoord);
15 reconstruct(reconstructed_B , s_texture2 , v_texCoord);
16 sum_result = reconstructed_A + reconstructed_B;
17 encode_output(sum_result);
18 }

Listing 2.13: VectorSum sample in OpenGL SC 2.0.

In the example above, the texture data (s_texture) is reconstructed onto the desired numerical
format (reconstructed_A) to perform the computation. Then, the output must be encoded back
to a GPU readable format. Once the result is available, we must read the pixels from the resulting
texture using glReadPixels to obtain the result in the CPU. Finally, the output pixel data must
be reconstructed to the desired format to get the correct result:

1 #define reconstruct_from_normalized_bytes(reconstructed , bytes)\
2 {\
3 float tmp = floor(256.0*bytes[0] - (bytes[0]/255.0));\
4 reconstructed = tmp;\
5 tmp = floor(256.0*bytes[1] - (bytes[1]/255.0))*256.0;\
6 reconstructed += tmp;\
7 tmp = floor(256.0*bytes[2] - (bytes[2]/255.0))*256.0*256.0;\
8 reconstructed += tmp;\
9 tmp = floor(256.0*bytes[3] - (bytes[3]/255.0))*256.0*256.0*256.0;\

10 reconstructed += tmp;\
11 if(bytes[3] > 0.5) reconstructed -= 4294967296.0;\
12 }

Listing 2.14: Reconstructing an int given an array of 4 bytes.

With this, we demonstrated that OpenGL SC 2.0 can support different numeric formats employing
the appropriate reconstructions. However, defining said functionality can become complex as it is
dependent on the precision of the target platform. Modern GPGPU programming models ease this
task, however they are not always available in the target platform.

61

Chapter 2. State of the Art

2.3.2.2 Brook Auto

Brook Auto [87] is an open source high level GPGPU programming language that extends C to
include data-parallel constructs in order to employ the GPU as a streaming co-processor. Brook
Auto specification consists of a well-defined subset of functionalities from the CUDA predecessor,
Brook GPU [18], which are tailored to the automotive domain. The language is amenable to
software certification and portable across every embedded GPU of the sector, thanks to the multiple
run-time back-ends supported: CPU, OpenGL ES 2.0, DirectX 9, OpenGL, AMD CTM.

In terms of software certification, several other popular GPGPU languages, such as CUDA or
OpenCL, are found to be non-compliant with the ISO26262 automotive standard certification.
Among those violated constraints we find: a) restricted use of pointers, b) no dynamic memory
allocation, c) static verification of program properties, d) resilience to faults and e) fault propa-
gation. Brook Auto, however, guarantees ISO26252 compliance as it defines a series of rules over
Brook to assure this purpose:

• Brook doesn’t support pointers: Instead, it uses streams to process data in a kernel.

• Brook won’t let the GPU threads to access beyond the allocated memory.

• Brook enforces upper-bounds to the loop constructs in the kernels, so that the maximum trip
count can be deduced.

• Brook doesn’t support recursion.

• Brook restricts the number of inputs and outputs to the ones supported in the target platform
to avoid emulation cost.

Brook Auto compiler consists of a modified version of the Brook compiler to enforce the ISO26262
compliant subset. In [89] the authors have performed an academic assessment of the tool qualifica-
tion of this compiler, named BRASIL, according to ISO26262, which provides assurance that the
compiler can be used for the development of safety critical systems. To our knowledge, BRASIL is
currently the first and only available qualifiable GPGPU compiler for high intergrity systems. In
Listing 2.15 we present a Brook Auto VectorSum example:

1 kernel void vectorSum(float a<>, float b<>, float c<>) {
2 c = a + b;
3 }
4

5 int main(void) {
6 float a_h[100], b_h[100], c_h[100];
7 float a_d<100>, b_d<100>, c_d<100>;
8

9 streamRead(a_d, a_h);

62

Chapter 2. State of the Art

10 streamRead(b_d, b_h);
11 vectorSum(a_d, b_d, c_d);
12 streamWrite(c_d, c_h);
13 }

Listing 2.15: Brook Auto VectorSum example.

As we can see from the above listing, the language syntax is very similar to that of CUDA, as
Brook greatly influenced the design of CUDA [88]. This gives the benefit of a simpler portability
between CUDA and Brook programs, while also providing wide support to platforms where other
GPGPU languages aren’t supported.

Brook Auto handles all intrinsic details pertaining to the selected back-end and platform, such as
the numeric formats. This enhances productivity as the source-to-source compiler ensures proper
code generation by relieving the programmer of the responsibility of managing textures and shader
pipelines.

Regarding performance, Brook Auto delivers an increased speedup over its CPU back-end. Its
developers also ran a series of benchmarks to evaluate the language. One representative example
is sgemm, where Brook Auto back-end delivers between 50 and 90% of the performance exhibited
by the handwritten application depending on the input size. According to the authors: ”This
difference in performance comes from the runtime overhead of Brook, and it is consistent with the
overhead of the original Brook implementation over the desktop version of OpenGL”. However,
this decreased performance comes with the benefit of a better complexity and productivity: The
Brook version was written in less than 2 hours with 70 lines of code, while the OpenGL ES 2 was
written and optimized in more than a year, and contains 1500 lines of code. Similar results were
presented with an avionics case study from Airbus Defence and Space, on an avionics-grade GPU
and a certified OpenGL SC 2.0 driver provided by CoreAVI in [16].

For all these reasons, Brook Auto is a very suitable selection for GPGPU computing in embedded
platforms that require compliance with the safety critical market.

2.3.2.3 Vulkan SC

Vulkan SC is a safety critical API focused to parallel processing in modern graphic accelerators.
The standard provides multithreading and low-level GPU access capabilities to enable finer-grained
control in the application with the goal of providing performance gains [46]. Nevertheless, this leaves
the responsibility of selecting the appropriate configuration in the target device in the hands of the
programmer.

Although Vulkan SC is still under development, CoreAVI has developed VkCore®SC [26], a compute
driver aligned with the Vulkan SC API from the Khronos Group. The driver is designed with the
goal of achieving high performance and flexibility while offering certification options for its use

63

Chapter 2. State of the Art

in critical systems (RTCA DO-178C/EUROCAE ED-12C, DAL A, ISO 26262, etc.). VkCore®SC
presents a series of features suitable for safety critical systems, some of which are the following:

• GPU shader programming and graphics compute: VkCore employs an offline GLSL compiler
to convert the shader source programs (Vertex, Fragment and Geometry) into Vulkan pipeline
objects used at runtime.

• Multi-core partitioning: The computation can be distributed throughout the cores present in
the target platform.

• GPU virtualization and hypervisor RTOS capabilities to support mixed criticality systems:
VkCore SC includes a virtualisation manager to enable multiple graphics rendering partitions
to drive single, or multiple GPUs. It’s architecture supports single or multi-threaded appli-
cations in multiple address spaces as well as sharing a single GPU by applications residing in
different Guest OSs.

Regarding the programmability of Vulkan, it can result verbose if we simply want to perform
GPGPU compute, as the programmer should setup the environment, bindings, pipelines, and com-
mands more appropriate for shader computing. However, unlike OpenGL ES 2.0, the compute
shader code is much more readable and allows the use of thread identifiers. Following next, I show
a VectorSum example running in a compute shader in Vulkan:

1 layout (std430, set=0, binding=0) buffer inA { int a[]; };
2 layout (std430, set=0, binding=1) buffer inB { int b[]; };
3 layout (std430, set=0, binding=2) buffer outR { int result[]; };
4

5 void main() {
6 const uint i = gl_GlobalInvocationID.x;
7 result[i] = a[i] + b[i];
8 }

Listing 2.16: Vulkan SC VectorSum example.

As we can see in the Listing, Vulkan SC compute code is recognisable as it’s very similar to what we
find in other GPGPU languages as CUDA or OpenCL. However, the verbose aspect of the API is in
the initialisation, setup and memory allocation part, which consumed around 500 lines of code for
this simplistic application. Similar results were reported also in [90] with the avionics application
used in [16]. In order to overcome this and allow for higher productivity and lower certification
effort, the authors mention that they are working on a Vulkan SC backed for Brook Auto/BRASIL
which is currently under development, which can bring its benefits to Vulkan SC, too. Finally, one
of the major advantages of Vulkan SC over OpenGL ES 2.0, is that the later does not explicitly
support graphics compute, which makes Vulkan SC more appropriate for GPGPU code.

64

Chapter 3

The UP2DATE Project

In this chapter we provide the necessary context related to the UP2DATE H2020 project, to which
this thesis contributed for the selection of the baseline hardware platform. Section 3.1 describes
the motivations and objectives of the UP2DATE project. Following next, Section 3.2 exposes the
project specifications in regards to the employed hardware, and finally, Section 3.3 describes the
GPU4S benchmark suite, which was employed and extended to measure the performance of the
proposed heterogeneous and multi-core candidate platforms.

3.1 Overview

In addition to the core requirements of safety-critical systems which we covered in the previous
chapter, there is a recent interest in the safety critical market to adapt Over-The-Air Software
Updates (OTASU) technologies on their embedded systems. This feature is increasingly used in
the automotive sector and expands to other critical systems, too. It gives vendors the ability to
enhance and add functionality to the software layer running on their devices without the need
for explicit manual maintenance, which benefits a number of industries, as manual labour can
sometimes become time-consuming, costly and in some cases dangerous:

• Time-consuming: Some software updates may require manual maintenance, which means that
the device needs specific preparations before the operator can work on it.

• Costly: It is common that during an update, the system becomes unavailable. This is a
problem for several domains, as it halts benefits while the device remains inoperable (i.e.
planes, industrial machinery, etc.).

• Dangerous: Some software updates need to be performed in hazardous conditions due to the
location of the device to update. By automating the procedure we remove any dangerous
factor that can harm the operator while updating the device.

All these reasons motivate the industry to adopt automatic updates for the majority of their critical
and non-critical devices.

65

Chapter 3. The UP2DATE Project

However, OTASU presents a series of challenges in the safety-critical domain [3]:

• Safety: Current safety standards are not designed to cover OTASU, thus, ensuring functional
safety after an update is challenging as there are no procedures that can guarantee this.

• Security: The fact that OTASU relies on online updates makes cybersecurity crucial, as
fraudulent software can compromise the functional safety of the device to update.

• Availability: It is common that during an upgrade, the system becomes unavailable, as this
activity may involve manual labour and a complete re-evaluation of the critical components
which need to ensure functional integrity. For this reason, if we consider OTASU as a solu-
tion, we must ensure compliance with the Safety and Security (SASE) requirements before
completing an online update.

• Performance: As we mentioned in Section 2.1, current software demands higher perfor-
mance, so the state-of-the-art mixed-criticality devices consist of hardware platforms based
on multi-core processors and accelerators capable to satisfy the performance requirements
of modern needs. This demand of performance opens new challenges that have a negative
impact in system safety and security.

The mission of the Horizon 2020 UP2DATE project is to address these issues by working on
new software update solutions focused towards heterogeneous high-performance Mixed Criticality
Cyber-Physical System (MCCPS). For this, UP2DATE proposes adopting a design-by-contract
approach [17] to enable modular updates without affecting the SASE properties of the updated
system. To this end, UP2DATE defines two types of contracts, horizontal: which covers the de-
pendencies between connected software components; and vertical: which ensures that the updated
software complies with the SASE requirements within the hardware platform.

Software ModuleSASE INPUTS
(requirements)

SASE OUTPUTS
(properties)

Horizontal contract
- Timing requirements
- Security requirements
- Software criticality

Vertical contract
- Resource usage
- Power, energy, temperature
- Performance monitoring

HARDWARE PLATFORM

Figure 3.1: UP2DATE SASE contracts.

66

Chapter 3. The UP2DATE Project

The novelty introduced at UP2DATE’s design-by-contract approach, is that the SASE constraints
and the hardware resource allocation requirements become an integral element of the contracts, as
we can see in Figure 3.1.

Deployment phase

Runtime phase

End-devices

MCCPS
GATEWAY

New available update

Design time checks

Update release

Update request / rollback

Offline monitoring

Online monitoring

Activation

Verification

Installation

Download

Virtual compatibility & integration check

Available

Released Approved
Not

applicable

In Test
Not

approved

Product supplier

In internal
test

Authorized

Not
authorized

Asset owner

Effective Installed

(a) Update cycle (b) IEC 62443 Patch lifecycle model

Figure 3.2: UP2DATE software update cycle.

All of this is comprised in the UP2DATE middleware, which is responsible of the entire update
cycle, starting with the download of the OTASU from an external server, and finishing by ensuring
compliance with the SASE contracts through different monitoring services. The high level workflow
of the described mechanism is showcased in Figure 3.2.

3.2 Platform requirements

The rationale for the selection of the candidate UP2DATE platforms is based on the requirements
described in the project proposal (summarised in Section 3.2.1) and on an exploration of the state
of the art carried out in the early stages of the project (briefly introduced in Section 3.2.2).

3.2.1 Project proposal requirements

The project summary exposes a series of concepts that align with the requirement set from the ICT-
01-2019 call for proposals [25]: UP2DATE will focus on heterogeneous, high performance platforms
on which we will develop observability and controllability solutions which will support on-line updates
preserving safety and security of mixed-criticality workloads.

67

Chapter 3. The UP2DATE Project

In the following, we revise these requirements and explain their impact on the platform selection:

1. Heterogeneous platforms: Hardware platforms containing both, a CPU and an accelera-
tor, can provide high performance at low power consumption. These solutions are becoming
trending within the embedded and safety critical domain as throughput based solutions are
becoming more popular due to the speed-up benefits they bring.

2. High-Performance: Currently, only accelerators like GPUs and FPGAs can guarantee the
very high performance requirements of modern complex functionalities in critical systems,
such as autonomous driving. This makes accelerators crucial for any throughput based task,
and therefore influenced greatly its presence on the project.

3. Observability: Being able to monitor the platform state through Performance Monitor
Counters (PMCs) or any other metric is key as monitoring is an essential part for the SASE
requirements present in many applications.

4. Controllabilty: The target platform should be capable to support resource configurability
to guarantee compliance with task requirements (i.e. contention).

5. Online updates: The platform should be able to replace and update software employing
OTASU’s technology, and the device should offer the possibility to do it while functioning.

6. Safety and Security: The candidate platforms should comply with SASE standards.

7. Mixed Criticality: The systems should support the co-existence of both, high and low
criticality tasks, while preserving functional safety and security.

8. Platform characterisation and benchmarking: The selection of the platform should be
based on the results granted by the execution of benchmarks and the characterisation of the
device. This thesis particularly contributes to this goal. Chapter 4 and 5 will expose further
details about this requirement.

3.2.2 Explored requirements

This Section describes identified requirements in the initial phases of the project:

1. Space partitioning: The target platform must offer mechanisms to isolate the memory of
the software entities. Thus, any malfunctions or security failures will not have an impact on
the rest of the system. Two features that enable space partitioning are MMUs and MPUs.

2. Time partitioning: The target platform must provide mechanisms to allocate timing bud-
gets to each software entity, so that the Worst Case Execution Time (WCET) is lower than
its deadline, which contributes to the SASE properties of the system.

68

Chapter 3. The UP2DATE Project

3. Software Randomisation: This mechanism [27] [56] [61] provides a way to compute the
WCET of critical tasks employing a technique called Probabilistic Timing Analysis [20]. Can-
didate platforms should therefore offer the possibility to implement software randomisation
methods.

4. Virtualisation: The candidate platform must support some form of virtualisation solution
to allow the coexistence of multiple operating systems running on the same host. This solution
facilitates the implementation of the partitioning concept revised above.

From this list of requirements, Chapter 4 describes the devices that conform with the specification.
But first, we describe in Section 3.3 the benchmark suite that is employed to evaluate all candidate
devices and thus select the research platform.

3.3 The GPU4S Benchmark Suite

As we described in Section 3.2, our candidate platforms are high-performance heterogeneous embed-
ded devices, so to evaluate them we need a benchmark suite capable of measuring the performance
of the accelerators and CPUs present in each platform. However, most state-of-the-art benchmark
suites do not meet this criteria.

As a solution, we decided to use GPU4S Bench, an open source benchmark suite developed at
BSC for Space On-board Processing Systems [79] in the context of the GPU4S project [59] funded
by the ESA. This suite contains many representative algorithms relevant for various safety-critical
domains, with a focus on GPU evaluation, offering both CUDA and OpenCL implementations, as
well as CPU reference code for each algorithm.

In GPU4S Bench each algorithm includes two or three variants depending on the literature:

• Naïve: Represents the most straightforward way to implement the algorithm.

• Hand-optimised: Employs different state-of-the-art techniques to further improve the per-
formance of the benchmark.

• Vendor-provided: When available, GPU4S Bench includes existing implementations of the
algorithm present in widely used libraries, such as cuBLAS1 or cuFFT2

Since GPU4S Bench was designed for the GPU4S project, it was focused only embedded GPUs and
as a consequnece it did not support multicore processors. For that reason we ported and optimised
the whole suite in OpenMP in order to make a more accurate and fair comparison of the CPU
capabilities of each platform, as described in Section 3.3.1.

1https://docs.nvidia.com/cuda/cublas/index.html
2https://docs.nvidia.com/cuda/cufft/index.html

69

https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cufft/index.html

Chapter 3. The UP2DATE Project

Benchmark Multi-core CPU GPU
Matrix Multiplication OpenBLAS cuBLAS
Fast Fourier Transform FFTW cuFFT
2D Matrix Convolution OpenMP hand-optimised CUDA hand-optimised
Finite Impulse Response Filter OpenMP hand-optimised CUDA hand-optimised
Local Response Normalisation OpenMP hand-optimised CUDA hand-optimised
Max Pooling OpenMP hand-optimised CUDA hand-optimised
Rectified Linear Unit (ReLU) OpenMP hand-optimised CUDA hand-optimised
SoftMax OpenMP hand-optimised CUDA hand-optimised
CIFAR10 OpenMP hand-optimised CUDA hand-optimised

Table 3.1: GPU4S Benchmarks used for the evaluation of the candidate platforms performed in
this thesis. The versions used in the Multi-core CPU column, were implemented in the context of
this thesis.

3.3.1 Porting GPU4S Bench to OpenMP

In order to extend the set of benchmarks with our OpenMP implementations, we decided to follow
the same standard proposed in GPU4S Bench, which consists of two or three implementations per
algorithm as discussed in Section 3.3.

All new OpenMP implementations were validated using the verification system included in the suite,
which compares, with certain error tolerance, the output of our parallel OpenMP implementation
against the verified output from the sequential reference code, included in every algorithm from
the suite.

To continue the style of the benchmarking suite, we have followed the same approach and included
vendor-provided library implementations wherever available, which is the case of the following two
benchmarks:

• Matrix multiplication: ATLAS and OpenBLAS3.

• Fast Fourier Transform: FFTW 4.

Table 3.1 displays the list of benchmarks we employed in the UP2DATE project to evaluate the
candidate platforms. Note that in addition to algorithmic building blocks which cover multiple
aerospace domains (observation/vision, telecommunication, machine learning), a complex inference
application is included as well, for solving a classification task with 10 classes like CIFAR-10.

3https://www.openblas.net/
4http://www.fftw.org/

70

https://www.openblas.net/
http://www.fftw.org/

Chapter 4

Experimental Setup

Based on the requirement list exposed in Section 3.2, this Chapter presents and analyses the list
of candidate platforms compliant with the exposed specification for the selection of the baseline
research platform.

4.1 Candidate platforms

One of the main requirements limiting the list of embedded platforms to choose from is the hetero-
geneity factor, which implies that we must select an embedded device with a GPU or an FPGA.

For the GPU platforms, we find two family of products capable of safety certification:

• NVIDIA Jetson: Is a series of low-power embedded boards from NVIDIA designed for
accelerating machine learning applications.

• Renesas R-Car: Is a series of embedded high-end SoCs for the automotive industry, specially
focusing Advanced Driver-Assistance Systems (ADAS).

In a premature analysis, we found that the Jetson family offers higher theoretical performance,
not only compared to the R-Car series, but to the majority of the embedded market. For this
reason, we opted to benchmark two of the latests heterogeneous embedded boards from NVIDIA:
the NVIDIA Jetson TX2 and the NVIDIA Jetson AGX Xavier.

As for the FPGA-based research platform, we selected the Xilinx Zynq Ultrascale+ [95], which is
also capable of achieving functional safety certification.

All the candidate devices and toolchain will be described in detail in the following Sections.

71

Chapter 4. Experimental Setup

4.1.1 NVIDIA Jetson TX2

This embedded platform contains four ARM A57 CPUs and two NVIDIA Denver cores, making
it an hybrid architecture. It also counts with a Pascal-based GPU which supports ECC in its
industrial version (TX2i)1. As for the software toolchain, we have used a clean installation of the
NVIDIA Jetpack2 4.3, which comes with the following core features:

• Linux Kernel version: 4.9.140 / L4T 32.3.1

• Ubuntu version: Ubuntu18.04 LTS aarch64

• CUDA version: 10.0

• gcc version: 7.5.0 (Ubuntu 7.5.0-3ubuntu1 18.04)

In terms of power configurability, the device supports 5 defined performance modes:

Mode
Property

MAXN MAX-Q MAX-P MAX-P* MAX-P
Power budget n/a 7.5W 15W 15W 15W
Mode ID 0 1 2 3 4
Online A57 CPU 4 4 4 4 1
Online D15 CPU 2 0 2 0 1
A57 CPU maximal frequency (MHz) 2000 1200 1400 2000 345
D15 CPU maximal frequency (MHz) 2000 n/a 1400 n/a 2000
GPU maximal frequency (MHz) 1300 850 1122 1122 1122
Memory maximal frequency (MHz) 1866 1331 1600 1600 1600

Table 4.1: Manufacturer’s Performance modes for Nvidia’s TX2

The performance mode we have selected for the TX2 board uses its four ARM A57 CPUs running
at 2000 MHz, and its pascal-based GPU running at 1122 MHz, all of that under a budget of 15
Watts. We decided to use the MAX-P* performance mode to explore the full capabilities of the
multi-core parallelism of the platform. Moreover, for maximum performance in parallel workloads
we need good load balancing, which is easier to achieve with homogeneous cores that have exactly
the same performance. That’s why we consider that mixing the Denver cores with the A57 cores
for the benchmarking evaluation is not a good idea.

For that reason, all the multi-core devices under test will be evaluated with four cores running at
their documented maximum theoretical frequency.

1https://developer.nvidia.com/embedded/jetson-tx2i
2https://developer.nvidia.com/embedded/jetpack

72

https://developer.nvidia.com/embedded/jetson-tx2i
https://developer.nvidia.com/embedded/jetpack

Chapter 4. Experimental Setup

4.1.2 NVIDIA Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier has a very similar software environment with the Jetson TX2,
since it is its successor. As we explained in Section 2.1.2.1, the board features eight ARMv8.2
Carmel cores, and includes Volta GPU. It also includes ASICs and accelerators targeted towards
Artificial Intelligence (AI).

In terms of functional safety, the ASIL-C certified version of the board (NVIDIA DRIVE Xavier)
includes many resilience features, such as fault detection or redundancy [48], which makes this
device suitable for the specification of the project (see Fig. 4.1).

Figure 4.1: NVIDIA DRIVE AGX Xavier. Image courtesy of NVIDIA.

Another great advantage of the NVIDIA Xavier is its power configurability, similar to the Jetson
TX2, we can find multiple power modes already pre-configured that will guarantee a series of
properties on the board, as we saw in table 2.1.

The board features seven performance modes, ranging from different numbers of computing re-
sources and frequencies, for which Nvidia ensures certain TDP.

To perform the benchmarking evaluation we have selected the power mode 2, which uses four of
the eight Carmel cores present in the board, and the Volta GPU running at a reduced frequency.
It is relevant to note that the power mode selected in the AGX Xavier is equivalent to that selected
in the Jetson TX2.

73

Chapter 4. Experimental Setup

4.1.3 Xilinx Zynq Ultrascale+ ZCU102

This heterogeneous device is a many-core platform containing both, a FPGA and a non-compute
graphics card. As mentioned in Section 2.1.2.2, the device comes with four ARM Cortex-A53
CPUs, two ARM Cortex-R5F real-time processors, and a Mali 400 MP2 GPU (see Fig. 4.2). As
for the chosen configuration, we assume that the cores are operating at their maximum frequencies
of 1.5GHz for the ARM Cortex-A53 cores and 600MHz for the R5 cores as outlined in the Xilinx
manual. Note that we are only benchmarking the multi-core capabilities of the platform, since
the FPGA requires different programming models which require effort beyond the scope of the
UP2DATE project. Similarly, the graphics-only capable GPU is not benchmarked either, since this
would require porting the GPU4S Benchmarking suite to another programming model, too, Brook
Auto. These activities are left as a future work, and should be taken into account when comparing
the computational capabilities of the full platform.

Figure 4.2: Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. Image courtesy of Xilinx.

Nevertheless, we were not able to configure the board to run multicore experiments, as the experi-
ments were performed during the lock-down period working remotely. This limited the possibility
of running experiments only to bare metal configurations, since booting in a linux environment
(Petalinux), requires physical access in order to boot the device from an SDcard. For this reason,
we perform the comparison of the Xilinx board with the rest of the platforms only in single core
mode.

74

Chapter 4. Experimental Setup

The configurability of this device isn’t equivalent to that found in the two previous NVIDIA plat-
forms, and due to the resource requirements we had to run the experiments using the default
configuration of the board.

To perform the measurements, we accessed the low-level performance counters using a combination
of C and assembly. For each benchmark, we collect the number of instructions executed, as well
as the number of cycles. We then use the nominal frequency of each processor to convert these
measurements into real elapsed time.

75

Chapter 5

Experimentation

In this Chapter we report and analyse the results of the benchmarking experiments we performed
for the selection of the UP2DATE research platform. For that, we divide the experiments in four
different sections: Section 5.1 reports the single core speed-up results; Section 5.2 elaborates on the
multi-core benchmarking; next, Section 5.3 exposes the GPU results for both NVIDIA platforms;
and finally, Section 5.4 wraps this study comparing the relative performance of the GPU over the
CPU for all the heterogeneous devices.

5.1 Single Core Performance comparison

Figure 5.1 compares the single core performance of the NVIDIA platforms against the performance
of the ARM-A53 CPU of the Zynq Ultrascale+ ZCU102. We omit the results of the real-time
R5 cores of the Zynq platform, due to their low-performance nature compared to the other high
performance processing elements. Note that since in Zynq we are running in bare metal, we cannot
use the library versions for the Matrix Multiplication and the Fast Fourier Transform. For this
reason, all the reported results are with a sequential, handwritten implementation which is identical
for all the platforms. On the TX2, we are running the benchmarks on both of its cores, the Denver
and the ARM A57. In general we see two trends: First, NVIDIA’s custom designed cores perform
better than the stock ARM CPUs. Second, the NVIDIA platforms are faster than the Xilinx one.
Specifically, we see that Xavier’s Carmel CPU is faster than the Zynq core in all benchmarks,
ranging from 2.5x to 9x.

Moreover, if we compare the two NVIDIA platforms, we notice that the Carmel CPU of the Xavier
is faster than the ARM-57 of the TX2 in all the benchmarks. The same happens for the Denver
cores of the TX2, however it has similar performance with the Carmel cores in several benchmarks.
We believe that this similarity is due to the fat that both cores were designed by NVIDIA, and the
Carmel design is an evolution of Denver’s.

76

Chapter 5. Experimentation

MM
1024

Conv2D
4096

FIR
65536

LRN
1024

Max-
Pool
8192

ReLU
4096

Soft-
Max
4096

FFT
2097152

CI-
FAR10
1024

0

2

4

6

8

10
8
.6
6

2
.7
1

3
.0
4 3
.7
4

3
.3
7

2
.8
8

9
.2
5

5
.9
1

2
.5
9

7
.5
6

1
.5

3
.0
4

2
.9
8

1
.7

1
.6
9

4
.0
5

3
.0
4

1
.7
1

4
.7

0
.6
8

1
.0
1

2
.6
6

0
.5
1 1
.1
5

4
.2
1

1
.6
9

0
.9
5

1 1 1 1 1 1 1 1 1

Speed-up Xavier Speed-up TX2 (Denver) Speed-up TX2 (ARM) Ultrascale (x1)

Figure 5.1: Single core performance comparison between the four CPUs found in the three candidate
platforms, relative to the performance of Zynq Ultrascale+.

Regarding the stock ARM CPU designs, the newer ARM A57 of the TX2, which is based on an
out-of-order microarchitecture performs significantly better in some benchmarks, however there are
also several ones in which it is outperformed by the in-order A53 of the Zynq, but in a smaller
extent.

5.2 Multi-Core Performance comparison

In the following, we compare the multi-core performance between the NVIDIA AGX Xavier and
the NVIDIA TX2. For this, we will use the OpenMP version of our benchmarks and libraries where
available.

Figure 5.2 shows the relative multicore performance of the two NVIDIA platforms, using the TX2
as a baseline. We used the same benchmarks with the same input sizes as in Section 5.1, but in
the cases where the execution time wasn’t high enough for a proper analysis we have evaluated an
additional larger input set (Matrix Multiplication and Convolution 2D).

The general trend is that the CPU efficiency of the NVIDIA Xavier in the 15W power mode is
significantly higher than that of the NVIDIA TX2 board using the same power mode in about half
of the cases, while in the remaining algorithms the performance is slightly slower than that of the
TX2.

77

Chapter 5. Experimentation

MM
1024

MM
4096

Conv2D
1024

Conv2D
4096

FIR
65536

LRN
4096

Max-
Pool
16384

ReLU
16384

Soft-
Max

16384

FFT
2097152

CI-
FAR10
4096

0

2

4

6

8
1
.6
6

0
.9
8

2
.9
9

1
.7
3

0
.8

0
.7
9

7
.2
2

5
.0
5

0
.9
4

2
.6
1

0
.7
1

1 1 1 1 1 1 1 1 1 1 1

Multicore CPU Xavier Speedup Multicore CPU TX2 (baseline)

Figure 5.2: Relative Multicore performance comparison between of Xavier and TX2.

We also observe two cases (Matrix Multiplication and Convolution 2D) where increasing the bench-
mark input size reduced the performance advantage of the Xavier platform over the TX2.

5.3 GPU Performance comparison

Next we compare the GPU performance capabilities of the TX2 and Xavier. Figure 5.3 shows the
relative performance of the Xavier’s GPU against the TX2 under the same power budget.

MM
1024

MM
4096

Conv
2D

1024

Conv
2D

4096

FIR
65536

LRN
4096

Max
Pool
1024

ReLU
16384

Soft
Max

16384

FFT
2097152

CI-
FAR10
4096

0

2

4

6

8

1
.3
4

1
.4
2 1
.9

1
.6
8

7
.6
4

2
.5
5 3
.4
6

1
.5
5

0
.9
4

0
.8
1

3
.0
4

1 1 1 1 1 1 1 1 1 1 1

GPU Xavier Speedup GPU TX2 (baseline)

Figure 5.3: Relative GPU performance of Xavier over the TX2.

78

Chapter 5. Experimentation

In terms of GPU performance the results are clearly in favour of the Xavier, since in all but two
cases, the performance of the NVIDIA AGX Xavier is higher, and only in two cases it is slightly
slower than the NVIDIA TX2.

By looking at Figure 5.2 and 5.3, we can conclude that the NVIDIA AGX Xavier is more energy
efficient than the TX2. In addition, the AGX Xavier features 8 cores and supports higher perfor-
mance modes running at 30 Watts, as we have seen in Table 2.1. Therefore, it is safe to assume
that the device can provide higher throughput to support modern demanding applications.

5.4 CPU to GPU comparison

One of the strongest requirements for our candidate platforms was heterogeneity, since industry
employs such solutions for the implementation of applications which require very high performance,
such as autonomous driving. For this reason, in this Section we validate this hypothesis by compar-
ing the relative performance of the GPU over the CPU of each heterogeneous platform evaluated
in the project, the NVIDIA AGX Xavier and the NVIDIA TX2.

MM
1024

MM
4096

Conv
2D

1024

Conv
2D

4096

FIR
65536

LRN
4096

Max
Pool
16384

ReLU
16384

Soft
Max

16384

FFT
2097152

CI-
FAR10
4096

10−1

100

101

102

103

104

105

106

8
.8
5

1
5
.6
1

2
,2
3
8
.1
5 6
1
,2
2
7
.9

3
.0
2

1
9
.1
1

1
1
.8
3

0
.2
7 1
.1
3

9
.2
3
·1

0
−
2

3
.6
11
0
.9
5

1
0
.7
5

3
,5
3
1
.7
9 6
2
,8
3
3
.6
7

0
.3
2

5
.9
3 2
4
.6
7

0
.8
9

1
.1
2

0
.3

0
.8
4

GPUvsCPU Xavier Speedup GPUvsCPU TX2 Speedup

Figure 5.4: Relative GPU performance over the CPU in the same SoC.

Figure 5.4 shows the results of the relative performance of the GPU compared to the 4 core multicore
CPU performance obtained using OpenMP of each of the considered NVIDIA platforms. The results
of both platforms follow the same trend. Generally, the GPU performs better than the CPU in
most of the algorithms. Specifically, there are benchmarks in which the GPU is several orders of
magnitude faster than the CPU, most notably in the case of the 2D Convolution. Benchmarks that
benefit from the GPU have high arithmetic complexity, which means that for each piece of data
fetched from memory, multiple arithmetic operations are performed.

79

Chapter 5. Experimentation

However, in the case of the FFT, the CPU library implementation (FFTW) is highly optimised
with respect to the CPU memory hierarchy, yielding a 10x performance advantage versus the GPU.
Nevertheless, we should mention that to gain performance benefits from this same algorithm on
the GPU we must consider scenarios where FFTs are performed repeatedly or over multiple signals
at the same time.

Other benchmarks with low arithmetic intensity, such as Relu, may not benefit from the GPU, due
to the low arithmetic nature of the algorithm. However, other kernels also used in neural network,
such as Matrix Multiplication or Max-Pooling obtain speedups ranging from 10% to 25x when
performed on the GPU.

It is therefore clear that the use of the GPU is a major performance enhancer even on an embedded
platform with a power consumption of 15W. Thus confirming our decision to invest in heterogeneous
architectures.

80

Chapter 6

Conclusions and Future Work

After reviewing the results from benchmarking the different candidate platforms, we can conclude
that the NVIDIA Xavier board is overall the most powerful platform we tested for several factors:

• Power efficiency: The NVIDIA Xavier provides more performance than the NVIDIA TX2
running at the same power budget.

• Higher degree of configurability: The NVIDIA Xavier supports vendor-verified power
modes configured by NVIDIA, and can provide higher power modes (30 W) due to its higher
TDP.

• Higher degree of multi-core parallelism: The NVIDIA Xavier provides 8 homogeneous
cores, while the NVIDIA TX2 provides 6.

• Main memory: NVIDIA Xavier has a larger memory (32GB) then the NVIDIA TX2 (8GB).

For these reasons, it is safe to assume that the NVIDIA Xavier can deliver much higher overall
performance compared with the rest of the platforms, for the type of workloads we consider to
use in the project, since we are not planning to develop hardware accelerators in the FPGA in
UP2DATE. Therefore, it will be the prioritised GPU research platform for the UP2DATE project
(Chapter 3), followed by the Xilinx Zynq Ultrascale+ ZCU102 as our FPGA candidate, in case
that some already implemented accelerators are deployed on it.

In regard to the possible future research lines that we will develop to complement this work,
we plan to port more benchmarks, such as the On-Board Processing Benchmarks (OBPMark)
benchmarking suite [85], with AI, compression and encryption algorithms representative of current
and future space software and other critical domains. In particular, OBPMark is another open
source benchmarking suite, again defined and implemented by ESA and BSC, which has been
created as a response to the lack of an open, common benchmarking infrastructure for devices
used in space [85]. Unlike GPU4S Bench which mainly consists of algorithmic building blocks

81

Chapter 6. Conclusions and Future Work

which allow covering multiple domains, OBPMark contains more complex applications, which are
reusing the GPU4S Bench algorithmic building block implementations in order to provide optimised
implementations for multiple devices, such as GPUs and multi-core processors thanks to the work
of this Thesis.

Moreover, we plan to add additional parallel processing methodologies and models such as Brook
Auto/BRASIL which will allow us to benchmark the Mali-400 GPU of the Xilinx platform and
programming models targeting FPGAs such as hardware description languages like Verilog, VHDL
and high-level synthesis solutions like OpenCL and OmpSs@FPGA.

82

Chapter 7

Publications

The main contributions of this Thesis have been published and presented in the following peer-
reviewed conference and workshop publications:

Alvaro Jover-Alvarez, Alejandro J. Calderón, Iván Rodriguez, Leonidas Kosmidis, Kazi Asi-
fuzzaman, Patrick Uven, Kim Grüttner, Tomaso Poggi, Irune Agirre. The UP2DATE Baseline
Research Platforms, Design, Automation and Test in Europe Conference and Exhibition (DATE)
2021 [53]

Leonidas Kosmidis, Ivan Rodriguez Ferrandez, Alvaro Jover-Alvarez, Sergi Alcaide, Jérôme
Lachaize, Olivier Notebaert, Antoine Certain, David Steenari. GPU4S: Major Project Outcomes,
Lessons Learnt and Way Forward Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE) 2021 [59]

Leonidas Kosmidis, Iván Rodriguez-Ferrandez, Alvaro Jover-Alvarez, Sergi Alcaide, Jérôme
Lachaize, Olivier Notebaert, Antoine Certain and David Steenari. GPU4S (GPUs for Space):
Are we there yet?, ESA/CNES/DLR European Workshop on On-Board Data Processing (OBDP)
2021 [60].

David Steenari, Leonidas Kosmidis, Ivan Rodriguez-Ferrandez, Alvaro Jover-Alvarez and Kyra
Förster. OBPMark (On-Board Processing Benchmarks) – Open Source Computational Performance
Benchmarks for Space Applications, ESA/CNES/DLR European Workshop on On-Board Data
Processing (OBDP) 2021 [85].

In addition to the main contributions, the work of this thesis was also presented in the following
poster sessions:

• Alvaro Jover-Alvarez and Leonidas Kosmidis. Evaluation of the Computational Capa-
bilities of High-Performance Embedded Platforms for Safety Critical Systems. International
Summer School on Advanced Computer Architecture and Compilation for High-performance
Embedded Systems (ACACES), Virtual Poster Session July 2020.

83

Chapter 7. Publications

• Alvaro Jover-Alvarez and Leonidas Kosmidis. Evaluation of the Computational Capabil-
ities of High-Performance Heterogeneous Embedded Platforms for Safety Critical Systems.
ACM Student Research Competition at the International Conference in Computer Aided
Design (ICCAD) 2020, Graduate Category

Moreover, we are currently working towards a survey paper based on the contents of the State-of-
the-Art Section (Section 2).

Finally, the source code contributions of the thesis have been released as part of the open source
benchmarking suites GPU4S and OBPMark, which are co-hosted at [84] [83].

84

Bibliography

[1] IEEE Standard for Information Technology - Portable Operating System Interface
(POSIX(R)). IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004), pages 1–3874, 2008.

[2] The OpenACC Application Programming Interface. Version 3.1. OpenACC-Standard.org,
2020.

[3] UP2DATE: Safe and secure over-the-air software updates on high-performance mixed-criticality
systems. Zenodo, August 2020. This is the author’s version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record was published in
DSD 2020. https://doi.org/10.1109/DSD51259.2020.00063.

[4] AdaCore. SPARK PRO.

[5] The European Space Agency. Chang’e-4 lander.

[6] The European Space Agency. Gr740: The esa next generation microprocessor (ngmp).

[7] The European Space Agency. Microprocessors, leon2 / leon2-ft.

[8] The European Space Agency. Microprocessors, LEON4 / LEON4-FT.

[9] Irune Agirre, Jaume Abella, Mikel Azkarate-Askasua, and Francisco J. Cazorla. On the tai-
loring of CAST-32A certification guidance to real COTS multicore architectures. In 2017 12th
IEEE International Symposium on Industrial Embedded Systems (SIES), pages 1–8, 2017.

[10] AMD. AMD Ryzen Embedded serie V1000.

[11] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Comput-
ing Capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), page 483–485, New York, NY, USA, 1967. Association for Computing
Machinery.

[12] Jan Andersson, Jiri Gaisler, and Roland Weigand. Next Generation MultiPurpose Micropro-
cessor. In L. Ouwehand, editor, DASIA 2010 - Data Systems In Aerospace, volume 682 of ESA
Special Publication, page 8, August 2010.

85

Bibliography

[13] The Multicore Association. Mtapi reference card.

[14] Ada Conformity Assessment Authority. Ada Reference Manual, 2016.

[15] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico Mas-
saioli, Ernesto Su, Priya Unnikrishnan, and Guansong Zhang. A Proposal for Task Parallelism
in OpenMP. In Barbara Chapman, Weiming Zheng, Guang R. Gao, Mitsuhisa Sato, Eduard
Ayguadé, and Dongsheng Wang, editors, A Practical Programming Model for the Multi-Core
Era, pages 1–12, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[16] Marc Benito, Matina Maria Trompouki, Leonidas Kosmidis, Juan David Garcia, Sergio Car-
retero, and Ken Wenger. Comparison of GPU Computing Methodologies for Safety-Critical
Systems: An Avionics Case Study. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2021.

[17] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste Raclet,
Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner Damm, Tom Henzinger, and
Kim Guldstrand Larsen. Contracts for Systems Design: Methodology and Application cases.
Research Report RR-8760, Inria Rennes Bretagne Atlantique ; INRIA, July 2015.

[18] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and
Pat Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware. ACM Trans.
Graph., 23(3):777–786, August 2004.

[19] Alan Burns and Andy Wellings. Concurrent and Real-Time Programming in Ada. Cambridge
University Press, 2007.

[20] Francisco J. Cazorla, Leonidas Kosmidis, Enrico Mezzetti, Carles Hernandez, Jaume Abella,
and Tullio Vardanega. Probabilistic Worst-Case Timing Analysis: Taxonomy and Compre-
hensive Survey. ACM Comput. Surv., 52(1), February 2019.

[21] Jon Perez Cerrolaza, Roman Obermaisser, Jaume Abella, Francisco J. Cazorla, Kim Grüttner,
Irune Agirre, Hamidreza Ahmadian, and Imanol Allende. Multi-Core Devices for Safety-
Critical Systems: A Survey. ACM Comput. Surv., 53(4), August 2020.

[22] Certification Authorities Software Team (CAST). Multi-core Processors, November 2016.
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast
/media/cast-32A.pdf.

[23] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, and Kevin
Skadron. A performance study of general-purpose applications on graphics processors using
CUDA. Journal of Parallel and Distributed Computing, 68(10):1370–1380, 2008. General-
Purpose Processing using Graphics Processing Units.

[24] Peter Clarke. European Space Agency launches free Sparc-like core. 2000.

86

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf

Bibliography

[25] European Commission. ICT-01-2019, Computing technologies and engineering methods for
cyber-physical systems of systems.

[26] CoreAVI. Vulkan SC Graphics and Compute.

[27] Fabrice Cros, Leonidas Kosmidis, Franck Wartel, David Morales, Jaume Abella, Ian Broster,
and Francisco J. Cazorla. Dynamic Software Randomisation: Lessons Learned From an
Aerospace Case Study. In DATE, 2017.

[28] Space Daily. Leon: the space chip that europe built.

[29] Michael Ditty, Ashish Karandikar, and David Reed. Nvidia’s Xavier SoC. In Hot chips: a
symposium on high performance chips, 2018.

[30] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack Don-
garra. From CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming. Parallel Computing, 38(8):391–407, 2012. APPLICATION ACCELERA-
TORS IN HPC.

[31] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier
Martorell, and Judit Planas. OmpSs: A PROPOSAL FOR PROGRAMMING HETERO-
GENEOUS MULTI-CORE ARCHITECTURES. Parallel Processing Letters, 21(02):173–193,
2011.

[32] Linux Foundation and Wind River Systems. Zephyr.

[33] Aeroflex Gaisler. Leon3, multiprocessing cpu core.

[34] Cobham Gaisler. Gr740 quad-core leon4 sparc v8 processor.

[35] Cobham Gaisler. GR740 Qualification Results.

[36] Cobham Gaisler. Leon4 processor.

[37] Cobham Gaisler. LEON5 Processor.

[38] Cobham Gaisler. Noel-v processor.

[39] Jiri Gaisler. Preparations for next-generation SPARC processor. 01 2003.

[40] Jiri Gaisler. Fault-tolerant and radiation-hardened SPARC processors. 2007.

[41] Nico Galoppo, Naga K. Govindaraju, Michael Henson, and Dinesh Manocha. Lu-gpu: Efficient
algorithms for solving dense linear systems on graphics hardware. In SC ’05: Proceedings of
the 2005 ACM/IEEE Conference on Supercomputing, pages 3–3, 2005.

[42] D. Geer. Chip makers turn to multicore processors. Computer, 38(5):11–13, 2005.

87

Bibliography

[43] Urs Gleim and Markus Levy. MTAPI: Parallel Programming for Embedded Multicore Systems.

[44] Khronos Group. Khronos OpenCL Registry.

[45] Khronos Group. OpenGL ES Overview.

[46] Khronos Group. Vulkan SC Overview.

[47] John L. Gustafson. Reevaluating Amdahl’s Law.

[48] Gary Hicok. NVIDIA Xavier Achieves Industry First with Expert Safety Assessment.

[49] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, and Ryoji Takaki. CUDA vs Ope-
nACC: Performance Case Studies with Kernel Benchmarks and a Memory-Bound CFD Ap-
plication. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, pages 136–143, 2013.

[50] infineon. 32-bit AURIX TriCore Microcontroller.

[51] infineon. AURIX™ TC3xx User Manual Part-1.

[52] IWOCL and SYCLcon. OpenCL Libraries and Toolkits, 2021.

[53] Alvaro Jover-Alvarez, Alejandro J. Calderon, Ivan Rodriguez, Leonidas Kosmidis, Kazi Asi-
fuzzaman, Patrick Uven, Kim Grüttner, Tomaso Poggi, and Irune Agirre. The UP2DATE
Baseline Research Platforms. In Proceedings of the Design, Automation & Test in Europe
(DATE), 02 2021.

[54] Ian Karlin, Jeff Keasler, and Rob Neely. LULESH 2.0 Updates and Changes. Technical Report
LLNL-TR-641973, August 2013.

[55] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors, Third
Edition: A Hands-on Approach, page 4. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 3rd edition, 2016.

[56] Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, Franck Wartel, Glenn Farrall, and
Francisco J. Cazorla. Containing Timing-Related Certification Cost in Automotive Systems
Deploying Complex Hardware. In DAC. (Best Paper Award), 2014.

[57] Leonidas Kosmidis, Alvaro Jover-Alvarez, Kazi Asifuzzaman, Francisco J. Cazorla, Kim Gruet-
tner, Patrick Uven, Tomaso Poggi, Jan Loewe, and Prajakta Garibdas. D2.2 Baseline Defini-
tion, 2020.

[58] Leonidas Kosmidis, Jérôme Lachaize, Jaume Abella, Olivier Notebaert, Francisco J Cazorla,
and David Steenari. Gpu4s: Embedded gpus in space. In 2019 22nd Euromicro Conference
on Digital System Design (DSD), pages 399–405. IEEE, 2019.

88

Bibliography

[59] Leonidas Kosmidis, Iván Rodriguez, Álvaro Jover, Sergi Alcaide, Jérôme Lachaize, Olivier
Notebaert, Antoine Certain, and David Steenari. GPU4S: Major Project Outcomes, Lessons
Learnt and Way Forward. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2021.

[60] Leonidas Kosmidis, Iván Rodriguez-Ferrandez, Alvaro Jover-Alvarez, Sergi Alcaide, Jérôme
Lachaize, Olivier Notebaert, Antoine Certain, and David Steenari. GPU4S (GPUs for Space):
Are we there yet? On-Board Data Processing 2021, Juny 2021.

[61] Leonidas Kosmidis, Roberto Vargas, David Morales, Eduardo Quiñones, Jaume Abella, and
Francisco J. Cazorla. TASA: Toolchain Agnostic Software Randomisation for Critical Real-
Time Systems. In ICCAD, 2016.

[62] E. Scott Larsen and David McAllister. Fast Matrix Multiplies Using Graphics Hardware. In
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, SC ’01, page 55, New
York, NY, USA, 2001. Association for Computing Machinery.

[63] leox.org. FAQ: Collection of frequently asked questions from the leon_sparc mailing list.

[64] Kelvin Li. OpenMP Accelerator Support for GPUs.

[65] Real Time Engineers Ltd. FreeRTOS.

[66] John W. McCormick and Peter C. Chapin. Building High Integrity Applications with SPARK.
Cambridge University Press, 2015.

[67] John W. McCormick, Frank Singhoff, and Jerome Hugues. Building Parallel, Embedded, and
Real-Time Applications with Ada. Cambridge University Press, USA, 2011.

[68] Alessandra Melani, Maria A. Serrano, Marko Bertogna, Isabella Cerutti, Eduardo Quiñones,
and Giorgio Buttazzo. A static scheduling approach to enable safety-critical OpenMP appli-
cations. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 659–665, 2017.

[69] Adam Moravanszky. Dense Matrix Algebra on the GPU. 2003.

[70] Motor Industry Software Reliability Association . MISRA C++:2008 Guidelines for the use
of the C++ language in critical systems. 2008.

[71] Motor Industry Software Reliability Association. MISRA-C:2012. Guidelines for the Use of
the C Language in Critical Systems. 2013.

[72] Aditya Nitsure, Himanshu Shrivastava, and Pidad Dsouza. GPU programming made easy with
OpenMP on IBM POWER.

[73] NVIDA. TECHNICAL REFERENCE MANUAL NVIDIA Xavier Series System-on-Chip,
2020.

89

Bibliography

[74] NVIDIA. CUDA Runtime API, 2021.

[75] NVIDIA. Jetson AGX Xavier Power Rails, 2021.

[76] OpenACC-standard.org. OpenACC.

[77] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. Hierarchical Task-Based
Programming With StarSs. The International Journal of High Performance Computing Ap-
plications, 23(3):284–299, 2009.

[78] Mikael Ramström, Jonas Höglund, Björn Enoksson, Ritva Svenningsson, Mats Steinert, and
Torbjörn Hult. FINAL REPORT, May 1997.

[79] Iván Rodriguez, Leonidas Kosmidis, Jérôme Lachaize, Olivier Notebaert, and David Steenari.
Gpu4s bench: Design and implementation of an open gpu benchmarking suite for space on-
board processing. Technical Report UPC-DAC-RR-CAP-2019-1, Universitat Politecnica de
Catalunya. https://www.ac.upc.edu/app/research-reports/public/html/research_c
enter_index-CAP-2019,en.html.

[80] Iván Rodriguez, Leonidas Kosmidis, Olivier Notebaert, Francisco J. Cazorla, and David
Steenari. An On-board Algorithm Implementation on an Embedded GPU: A Space Case
Study. In 2020 Design, Automation Test in Europe Conference Exhibition (DATE), pages
1718–1719, 2020.

[81] Sara Royuela, Alejandro Duran, Maria A. Serrano, Eduardo Quiñones, and Xavier Martorell. A
Functional Safety OpenMP* for Critical Real-Time Embedded Systems. In Bronis R. de Supin-
ski, Stephen L. Olivier, Christian Terboven, Barbara M. Chapman, and Matthias S. Müller,
editors, Scaling OpenMP for Exascale Performance and Portability, pages 231–245, Cham,
2017. Springer International Publishing.

[82] Tobias Schuele. Embedded Multicore Building Blocks: Parallel Programming Made Easy.
Embedded World, 2015.

[83] David Steenari, Leonidas Kosmidis, Alvaro Jover-Alvarez, and Ivan Rodriguez-Ferrandez.
OBPMark (On-Board Processing Benchmarks) GitHub, 2021. https://github.com/OBPMark.

[84] David Steenari, Leonidas Kosmidis, Alvaro Jover-Alvarez, and Ivan Rodriguez-Ferrandez.
OBPMark (On-Board Processing Benchmarks) Website, 2021. https://obpmark.github
.io/.

[85] David Steenari, Leonidas Kosmidis, Ivan Rodriguez-Ferrandez, Alvaro Jover-Alvarez, and Kyra
Förster. OBPMark (On-Board Processing Benchmarks) – Open Source Computational Per-
formance Benchmarks for Space Applications. On-Board Data Processing 2021, Juny 2021.

90

https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html
https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html
https://github.com/OBPMark
https://obpmark.github.io/
https://obpmark.github.io/

Bibliography

[86] Matina Maria Trompouki and Leonidas Kosmidis. Towards general purpose computations on
low-end mobile GPUs. In 2016 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 539–542, 2016.

[87] Matina Maria Trompouki and Leonidas Kosmidis. Brook Auto: High-Level Certification-
Friendly Programming for GPU-powered Automotive Systems. In 2018 55th ACM/ES-
DA/IEEE Design Automation Conference (DAC), pages 1–6, 2018.

[88] Matina Maria Trompouki and Leonidas Kosmidis. Brook GLES Pi: Democratising Accelerator
Programming. In Proceedings of the Conference on High-Performance Graphics, HPG ’18, New
York, NY, USA, 2018. Association for Computing Machinery.

[89] Matina Maria Trompouki and Leonidas Kosmidis. BRASIL: A High-Integrity GPGPU
Toolchain for Automotive Systems. In 2019 IEEE 37th International Conference on Com-
puter Design (ICCD), pages 660–663, 2019.

[90] Matina Maria Trompouki and Leonidas Kosmidis. DO-178C Certification of General-Purpose
GPU Software: Review of Existing Methods and Future Directions. In Digital Avionics Systems
Conference, 2021.

[91] W. Wang. POSIX threads programming. 2005.

[92] WikiChip. Ryzen Embedded V1605B - AMD.

[93] WikiChip. NVIDIA Xavier Block diagram, 2021.

[94] Xilinx. Zynq Power Management Framework User Guide For Zynq UltraScale+ MPSoC De-
vices.

[95] Xilinx. Zynq UltraScale+ MPSoC.

[96] Xilinx. Zynq UltraScale+ MPSoC Base Targeted Reference Design.

91

	Abstract
	Introduction
	Introduction and Motivation
	Contributions
	Thesis Organisation

	State of the Art
	Hardware platforms for Critical Systems
	Traditional architectures
	Parallel and heterogeneous architectures for critical systems

	cpu Parallel Processing Methodologies
	General Purpose Multi-core Programming models
	Parallel Processing in Critical Systems

	gpu Compute Processing Methodologies
	General purpose programming models
	Programming models for critical systems

	The UP2DATE Project
	Overview
	Platform requirements
	Project proposal requirements
	Explored requirements

	The GPU4S Benchmark Suite
	Porting GPU4S Bench to OpenMP

	Experimental Setup
	Candidate platforms
	NVIDIA Jetson TX2
	NVIDIA Jetson AGX Xavier
	Xilinx Zynq Ultrascale+ ZCU102

	Experimentation
	Single Core Performance comparison
	Multi-Core Performance comparison
	GPU Performance comparison
	CPU to GPU comparison

	Conclusions and Future Work
	Publications

