10 research outputs found

    Active multi-fidelity Bayesian online changepoint detection

    Full text link
    Online algorithms for detecting changepoints, or abrupt shifts in the behavior of a time series, are often deployed with limited resources, e.g., to edge computing settings such as mobile phones or industrial sensors. In these scenarios it may be beneficial to trade the cost of collecting an environmental measurement against the quality or "fidelity" of this measurement and how the measurement affects changepoint estimation. For instance, one might decide between inertial measurements or GPS to determine changepoints for motion. A Bayesian approach to changepoint detection is particularly appealing because we can represent our posterior uncertainty about changepoints and make active, cost-sensitive decisions about data fidelity to reduce this posterior uncertainty. Moreover, the total cost could be dramatically lowered through active fidelity switching, while remaining robust to changes in data distribution. We propose a multi-fidelity approach that makes cost-sensitive decisions about which data fidelity to collect based on maximizing information gain with respect to changepoints. We evaluate this framework on synthetic, video, and audio data and show that this information-based approach results in accurate predictions while reducing total cost.Comment: 37th Conference on Uncertainty in Artificial Intelligenc

    Restarted Bayesian Online Change-point Detector achieves Optimal Detection Delay

    Get PDF
    International audienceIn this paper, we consider the problem of sequential change-point detection where both the changepoints and the distributions before and after the change are assumed to be unknown. For this problem of primary importance in statistical and sequential learning theory, we derive a variant of the Bayesian Online Change Point Detector proposed by (Fearnhead & Liu, 2007) which is easier to analyze than the original version while keeping its powerful message-passing algorithm. We provide a non-asymptotic analysis of the false-alarm rate and the detection delay that matches the existing lower-bound. We further provide the first explicit high-probability control of the detection delay for such approach. Experiments on synthetic and realworld data show that this proposal outperforms the state-of-art change-point detection strategy, namely the Improved Generalized Likelihood Ratio (Improved GLR) while compares favorably with the original Bayesian Online Change Point Detection strategy

    2.5D Chiplet Architecture for Embedded Processing of High Velocity Streaming Data

    Get PDF
    This dissertation presents an energy efficient 2.5D chiplet-based architecture for real-time probabilistic processing of high-velocity sensor data, from an autonomous real-time ubiquitous surveillance imaging system. This work addresses problems at all levels of description. At the lowest physical level, new standard cell libraries have been developed for ultra-low voltage CMOS synthesis, as well as custom SRAM memory blocks, and mixed-signal physical true random number generators based on the perturbation of Sigma-Delta structures using random telegraph noise (RTN) in single transistor devices. At the chip level architecture, an innovative compact buffer-less switched circuit mesh network on chip (NoC) capable of reaching very high throughput (1.6Tbps), finite packet delay delivery, free from packet dropping, and free from dead-locks and live-locks, was designed for this chiplet-based solution. Additionally, a second NoC connecting processors in the network, was implemented based on token-rings, allowing access to external DDR memory. Furthermore, a new clock tree distribution network, and a wide bandwidth DRAM physical interface have been designed to address the data flow requirements within and across chiplets. At the algorithm and representation levels, the Online Change Point Detection (CPD) algorithm has been implemented for on-line learning of background-foreground segmentation. Instead of using traditional binary representation of numbers, this architecture relies on unconventional processing of signals using a bio-inspired (spike-based) unary representation of numbers, where these numbers are represented in a stochastic stream of Bernoulli random variables. By using this representation, probabilistic algorithms can be executed in a native architecture with precision on demand, where if more accuracy is required, more computational time and power can be allocated. The SoC chiplet architecture has been extensively simulated and validated using state of the art CAD methodology, and has been submitted to fabrication in a dedicated 55nm GF CMOS technology wafer run. Experimental results from fabricated test chips in the same technology are also presented
    corecore