19,879 research outputs found

    Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper we consider disjoint decomposition of algebraic and non-linear partial differential systems of equations and inequations into so-called simple subsystems. We exploit Thomas decomposition ideas and develop them into a new algorithm. For algebraic systems simplicity means triangularity, squarefreeness and non-vanishing initials. For differential systems the algorithm provides not only algebraic simplicity but also involutivity. The algorithm has been implemented in Maple

    Algorithmic Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper, we consider systems of algebraic and non-linear partial differential equations and inequations. We decompose these systems into so-called simple subsystems and thereby partition the set of solutions. For algebraic systems, simplicity means triangularity, square-freeness and non-vanishing initials. Differential simplicity extends algebraic simplicity with involutivity. We build upon the constructive ideas of J. M. Thomas and develop them into a new algorithm for disjoint decomposition. The given paper is a revised version of a previous paper and includes the proofs of correctness and termination of our decomposition algorithm. In addition, we illustrate the algorithm with further instructive examples and describe its Maple implementation together with an experimental comparison to some other triangular decomposition algorithms.Comment: arXiv admin note: substantial text overlap with arXiv:1008.376

    Algebraic and Puiseux series solutions of systems of autonomous algebraic ODEs of dimension one in several variables

    Get PDF
    In this paper we study systems of autonomous algebraic ODEs in several differential indeterminates. We develop a notion of algebraic dimension of such systems by considering them as algebraic systems. Afterwards we apply differential elimination and analyze the behavior of the dimension in the resulting Thomas decomposition. For such systems of algebraic dimension one, we show that all formal Puiseux series solutions can be approximated up to an arbitrary order by convergent solutions. We show that the existence of Puiseux series and algebraic solutions can be decided algorithmically. Moreover, we present a symbolic algorithm to compute all algebraic solutions. The output can either be represented by triangular systems or by their minimal polynomials.Agencia Estatal de InvestigaciĂłnAustrian Science Fun

    Singularities of Algebraic Differential Equations

    Get PDF
    We combine algebraic and geometric approaches to general systems of algebraic ordinary or partial differential equations to provide a unified framework for the definition and detection of singularities of a given system at a fixed order. Our three main results are firstly a proof that even in the case of partial differential equations regular points are generic. Secondly, we present an algorithm for the effective detection of all singularities at a given order or, more precisely, for the determination of a regularity decomposition. Finally, we give a rigorous definition of a regular differential equation, a notion that is ubiquitous in the geometric theory of differential equations, and show that our algorithm extracts from each prime component a regular differential equation. Our main algorithmic tools are on the one hand the algebraic resp. differential Thomas decomposition and on the other hand the Vessiot theory of differential equations.Comment: 45 pages, 5 figure

    The MAPLE package TDDS for computing Thomas decompositions of systems of nonlinear PDEs

    Get PDF
    We present the Maple package TDDS (Thomas Decomposition of Differential Systems) for decomposition of polynomially nonlinear differential systems, which in addition to equations may contain inequations, into a finite set of differentially triangular and algebraically simple subsystems whose subsets of equations are involutive. Usually the decomposed system is substantially easier to investigate and solve both analytically and numerically. The distinctive property of a Thomas decomposition is disjointness of the solution sets of the output subsystems. Thereby, a solution of a well-posed initial problem belongs to one and only one output subsystem. The Thomas decomposition is fully algorithmic. It allows to perform important elements of algebraic analysis of an input differential system such as: verifying consistency, i.e., the existence of solutions; detecting the arbitrariness in the general analytic solution; given an additional equation, checking whether this equation is satisfied by all common solutions of the input system; eliminating a part of dependent variables from the system if such elimination is possible; revealing hidden constraints on dependent variables, etc. Examples illustrating the use of the package are given

    Thomas decompositions of parametric nonlinear control systems

    Full text link
    This paper presents an algorithmic method to study structural properties of nonlinear control systems in dependence of parameters. The result consists of a description of parameter configurations which cause different control-theoretic behaviour of the system (in terms of observability, flatness, etc.). The constructive symbolic method is based on the differential Thomas decomposition into disjoint simple systems, in particular its elimination properties

    The Differential Counting Polynomial

    Full text link
    The aim of this paper is a quantitative analysis of the solution set of a system of polynomial nonlinear differential equations, both in the ordinary and partial case. Therefore, we introduce the differential counting polynomial, a common generalization of the dimension polynomial and the (algebraic) counting polynomial. Under mild additional asumptions, the differential counting polynomial decides whether a given set of solutions of a system of differential equations is the complete set of solutions
    • …
    corecore