17,512 research outputs found

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Working memory and working attention: What could possibly evolve?

    Get PDF
    The concept of “working” memory is traceable back to nineteenth century theorists (Baldwin, 1894; James 1890) but the term itself was not used until the mid-twentieth century (Miller, Galanter & Pribram, 1960). A variety of different explanatory constructs have since evolved which all make use of the working memory label (Miyake & Shah, 1999). This history is briefly reviewed and alternative formulations of working memory (as language-processor, executive attention, and global workspace) are considered as potential mechanisms for cognitive change within and between individuals and between species. A means, derived from the literature on human problem-solving (Newell & Simon, 1972), of tracing memory and computational demands across a single task is described and applied to two specific examples of tool-use by chimpanzees and early hominids. The examples show how specific proposals for necessary and/or sufficient computational and memory requirements can be more rigorously assessed on a task by task basis. General difficulties in connecting cognitive theories (arising from the observed capabilities of individuals deprived of material support) with archaeological data (primarily remnants of material culture) are discussed

    Professional Judgment in an Era of Artificial Intelligence and Machine Learning

    Get PDF
    Though artificial intelligence (AI) in healthcare and education now accomplishes diverse tasks, there are two features that tend to unite the information processing behind efforts to substitute it for professionals in these fields: reductionism and functionalism. True believers in substitutive automation tend to model work in human services by reducing the professional role to a set of behaviors initiated by some stimulus, which are intended to accomplish some predetermined goal, or maximize some measure of well-being. However, true professional judgment hinges on a way of knowing the world that is at odds with the epistemology of substitutive automation. Instead of reductionism, an encompassing holism is a hallmark of professional practice—an ability to integrate facts and values, the demands of the particular case and prerogatives of society, and the delicate balance between mission and margin. Any presently plausible vision of substituting AI for education and health-care professionals would necessitate a corrosive reductionism. The only way these sectors can progress is to maintain, at their core, autonomous professionals capable of carefully intermediating between technology and the patients it would help treat, or the students it would help learn

    Beyond Covariation: Cues to Causal Structure

    Get PDF
    Causal induction has two components: learning about the structure of causal models and learning about causal strength and other quantitative parameters. This chapter argues for several interconnected theses. First, people represent causal knowledge qualitatively, in terms of causal structure; quantitative knowledge is derivative. Second, people use a variety of cues to infer causal structure aside from statistical data (e.g. temporal order, intervention, coherence with prior knowledge). Third, once a structural model is hypothesized, subsequent statistical data are used to confirm, refute, or elaborate the model. Fourth, people are limited in the number and complexity of causal models that they can hold in mind to test, but they can separately learn and then integrate simple models, and revise models by adding and removing single links. Finally, current computational models of learning need further development before they can be applied to human learning

    Inflexibility of experts – Reality or myth? Quantifying the Einstellung effect in chess masters

    Get PDF
    How does the knowledge of experts affect their behaviour in situations that require unusual methods of dealing? One possibility, loosely originating in research on creativity and skill acquisition, is that an increase in expertise can lead to inflexibility of thought due to automation of procedures. Yet another possibility, based on expertise research, is that experts’ knowledge leads to flexibility of thought. We tested these two possibilities in a series of experiments using the Einstellung (set) effect paradigm. Chess players tried to solve problems that had both a familiar but non-optimal solution and a better but less familiar one. The more familiar solution induced the Einstellung (set) effect even in experts, preventing them from finding the optimal solution. The presence of the non-optimal solution reduced experts' problem solving ability was reduced to about that of players three standard deviations lower in skill level by the presence of the non-optimal solution. Inflexibility of thought induced by prior knowledge (i.e., the blocking effect of the familiar solution) was shown by experts but the more expert they were, the less prone they were to the effect. Inflexibility of experts is both reality and myth. But the greater the level of expertise, the more of a myth it becomes

    Computational Creativity

    Get PDF
    In: Encyclopedia of Systems Biology, W. Dubitzky, O. Wolkenhauer, K-H Cho, H. Yokota (Eds.), Springer 2011Understanding brain processes behind creativity and modeling them using computational means is one of the grand challenges for systems biology. Computational creativity is a new field, inspired by cognitive psychology and neuroscience. In many respects human-level intelligence is far beyond what artificial intelligence can provide now, especially in regard to the high-level functions, involving thinking, reasoning, planning and the use of language. Intuition, insight, imagery and creativity are important aspects of all these functions
    • …
    corecore