19,202 research outputs found

    FogGIS: Fog Computing for Geospatial Big Data Analytics

    Full text link
    Cloud Geographic Information Systems (GIS) has emerged as a tool for analysis, processing and transmission of geospatial data. The Fog computing is a paradigm where Fog devices help to increase throughput and reduce latency at the edge of the client. This paper developed a Fog-based framework named Fog GIS for mining analytics from geospatial data. We built a prototype using Intel Edison, an embedded microprocessor. We validated the FogGIS by doing preliminary analysis. including compression, and overlay analysis. Results showed that Fog computing hold a great promise for analysis of geospatial data. We used several open source compression techniques for reducing the transmission to the cloud.Comment: 6 pages, 4 figures, 1 table, 3rd IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (09-11 December, 2016) Indian Institute of Technology (Banaras Hindu University) Varanasi, Indi

    CyberLiveApp: a secure sharing and migration approach for live virtual desktop applications in a cloud environment

    Get PDF
    In recent years we have witnessed the rapid advent of cloud computing, in which the remote software is delivered as a service and accessed by users using a thin client over the Internet. In particular, the traditional desktop application can execute in the remote virtual machines without re-architecture providing a personal desktop experience to users through remote display technologies. However, existing cloud desktop applications mainly achieve isolation environments using virtual machines (VMs), which cannot adequately support application-oriented collaborations between multiple users and VMs. In this paper, we propose a flexible collaboration approach, named CyberLiveApp, to enable live virtual desktop applications sharing based on a cloud and virtualization infrastructure. The CyberLiveApp supports secure application sharing and on-demand migration among multiple users or equipment. To support VM desktop sharing among multiple users, a secure access mechanism is developed to distinguish view privileges allowing window operation events to be tracked to compute hidden window areas in real time. A proxy-based window filtering mechanism is also proposed to deliver desktops to different users. To support application sharing and migration between VMs, we use the presentation streaming redirection mechanism and VM cloning service. These approaches have been preliminary evaluated on an extended MetaVNC. Results of evaluations have verified that these approaches are effective and useful

    Fast and secure laptop backups with encrypted de-duplication

    Get PDF
    Many people now store large quantities of personal and corporate data on laptops or home computers. These often have poor or intermittent connectivity, and are vulnerable to theft or hardware failure. Conventional backup solutions are not well suited to this environment, and backup regimes are frequently inadequate. This paper describes an algorithm which takes advantage of the data which is common between users to increase the speed of backups, and reduce the storage requirements. This algorithm supports client-end per-user encryption which is necessary for confidential personal data. It also supports a unique feature which allows immediate detection of common subtrees, avoiding the need to query the backup system for every file. We describe a prototype implementation of this algorithm for Apple OS X, and present an analysis of the potential effectiveness, using real data obtained from a set of typical users. Finally, we discuss the use of this prototype in conjunction with remote cloud storage, and present an analysis of the typical cost savings.
    • 

    corecore