2,274 research outputs found

    Numerical Linked-Cluster Algorithms. I. Spin systems on square, triangular, and kagome lattices

    Full text link
    We discuss recently introduced numerical linked-cluster (NLC) algorithms that allow one to obtain temperature-dependent properties of quantum lattice models, in the thermodynamic limit, from exact diagonalization of finite clusters. We present studies of thermodynamic observables for spin models on square, triangular, and kagome lattices. Results for several choices of clusters and extrapolations methods, that accelerate the convergence of NLC, are presented. We also include a comparison of NLC results with those obtained from exact analytical expressions (where available), high-temperature expansions (HTE), exact diagonalization (ED) of finite periodic systems, and quantum Monte Carlo simulations.For many models and properties NLC results are substantially more accurate than HTE and ED.Comment: 14 pages, 16 figures, as publishe

    Numerical Linked-Cluster Approach to Quantum Lattice Models

    Full text link
    We present a novel algorithm that allows one to obtain temperature dependent properties of quantum lattice models in the thermodynamic limit from exact diagonalization of small clusters. Our Numerical Linked Cluster (NLC) approach provides a systematic framework to assess finite-size effects and is valid for any quantum lattice model. Unlike high temperature expansions (HTE), which have a finite radius of convergence in inverse temperature, these calculations are accurate at all temperatures provided the range of correlations is finite. We illustrate the power of our approach studying spin models on {\it kagom\'e}, triangular, and square lattices.Comment: 4 pages, 5 figures, published versio

    Linked cluster expansions for open quantum systems on a lattice

    Get PDF
    We propose a generalization of the linked-cluster expansions to study driven-dissipative quantum lattice models, directly accessing the thermodynamic limit of the system. Our method leads to the evaluation of the desired extensive property onto small connected clusters of a given size and topology. We first test this approach on the isotropic spin-1/2 Hamiltonian in two dimensions, where each spin is coupled to an independent environment that induces incoherent spin flips. Then we apply it to the study of an anisotropic model displaying a dissipative phase transition from a magnetically ordered to a disordered phase. By means of a Pad\'e analysis on the series expansions for the average magnetization, we provide a viable route to locate the phase transition and to extrapolate the critical exponent for the magnetic susceptibility.Comment: 10 pages, 5 figure

    Numerical Linked-Cluster Algorithms. II. t-J models on the square lattice

    Full text link
    We discuss the application of a recently introduced numerical linked-cluster (NLC) algorithm to strongly correlated itinerant models. In particular, we present a study of thermodynamic observables: chemical potential, entropy, specific heat, and uniform susceptibility for the t-J model on the square lattice, with J/t=0.5 and 0.3. Our NLC results are compared with those obtained from high-temperature expansions (HTE) and the finite-temperature Lanczos method (FTLM). We show that there is a sizeable window in temperature where NLC results converge without extrapolations whereas HTE diverges. Upon extrapolations, the overall agreement between NLC, HTE, and FTLM is excellent in some cases down to 0.25t. At intermediate temperatures NLC results are better controlled than other methods, making it easier to judge the convergence and numerical accuracy of the method.Comment: 7 pages, 12 figures, as publishe

    Thermodynamics and phase transitions for the Heisenberg model on the pinwheel distorted kagome lattice

    Full text link
    We study the Heisenberg model on the pinwheel distorted kagome lattice as observed in the material Rb_2Cu_3SnF_12. Experimentally relevant thermodynamic properties at finite temperatures are computed utilizing numerical linked-cluster expansions. We also develop a Lanczos-based, zero-temperature, numerical linked cluster expansion to study the approach of the pinwheel distorted lattice to the uniform kagome-lattice Heisenberg model. We find strong evidence for a phase transition before the uniform limit is reached, implying that the ground state of the kagome-lattice Heisenberg model is likely not pinwheel dimerized and is stable to finite pinwheel-dimerizing perturbations.Comment: 6 pages, 6 figures, 1 tabl
    • …
    corecore