8,523 research outputs found

    Experimentally-determined characteristics of radiant systems for office buildings

    Get PDF
    Radiant heating and cooling systems have significant energy-saving potential and are gaining popularity in commercial buildings. The main aim of the experimental study reported here was to characterize the behavior of radiant cooling systems in a typical office environment, including the effect of ceiling fans on stratification, the variation in comfort conditions from perimeter to core, control on operative temperature vs. air temperature and the effect of carpet on cooling capacity. The goal was to limit both the first cost and the perceived risk associated with such systems. Two types of radiant systems, the radiant ceiling panel (RCP) system and the radiant slab (RS) system, were investigated. The experiments were carried out in one of the test cells that constitute the FLEXLAB test facility at the Lawrence Berkeley National Laboratory in March and April 2016. In total, ten test cases (five for RCP and five for RS) were performed, covering a range of operational conditions. In cooling mode, the air temperature stratification is relatively small in the RCP, with a maximum value of 1.6 K. The observed stratification effect was significantly greater in the RS, twice as much as that in the RCP. The maximum increase in dry bulb temperature in the perimeter zone due to solar radiation was 1.2 K for RCP and 0.9 K for RS – too small to have a significant impact on thermal comfort. The use of ceiling fans was able to reduce any excess stratification and provide better indoor comfort, if required. The use of thin carpet requires a 1 K lower supply chilled water temperature to compensate for the added thermal resistance, somewhat reducing the opportunities for water-side free cooling and increasing the risk of condensation. In both systems, the difference between the room operative temperature and the room air temperature is small when the cooling loads are met by the radiant systems. This makes it possible to use the air temperature to control the radiant systems in lieu of the operative temperature, reducing both first cost and maintenance costs

    Post-Occupancy Evaluation and IEQ Measurements from 64 Office Buildings: Critical Factors and Thresholds for User Satisfaction on Thermal Quality

    Get PDF
    The indoor environmental quality (IEQ) of buildings can have a strong influence on occupants’ comfort, productivity, and health. Post-occupancy evaluation (POE) is necessary in assessing the IEQ of the built environment, and it typically relies on the subjective surveys of thermal quality, air quality, visual quality, and acoustic quality. In this research, we expanded POE to include both objective IEQ measurements and the technical attributes of building systems (TABS) that may affect indoor environment and user satisfaction. The suite of three tools, including user satisfaction survey, workstation IEQ measurements, and TABS in the National Environmental Assessment Toolkit (NEAT) has been deployed in 1601 workstations in 64 office buildings, generating a rich database for statistical evaluation of possible correlations between the physical attributes of workstations, environmental conditions, and user satisfaction. Multivariate regression and multiple correlation coefficient statistical analysis revealed the relationship between measured and perceived IEQ indices, interdependencies between IEQ indices, and other satisfaction variables of significance. The results showed that overall, 55% of occupants responded as “satisfied” or “neutral”, and 45% reported being “dissatisfied” in their thermal quality. Given the dataset, air temperature in work area, size of thermal zone, window quality, level of temperature control, and radiant temperature asymmetry with façade are the critical factors for thermal quality satisfaction in the field. As a result, the outcome of this research contributes to identifying correlations between occupant satisfaction, measured data, and technical attributes of building systems. The presented integrated IEQ assessment method can further afford robust predictions of building performance against metrics and guidelines for IEQ standards to capture revised IEQ thresholds that impact building occupants’ satisfaction.</jats:p

    Alternative to the Conventional Heating and Cooling Systems in Public Buildings

    Get PDF
    The paper presents an alternative system for heating and cooling in public buildings. The system was designed for the retrofitted building of the Slovene Ethnographic Museum (SEM) where it was also extensively tested. The installed system includes radiant wall mounted panels for heating and cooling, localized automated tangential fans for cooling and ventilation and a centralized building management system for the regulation and supervision of the performance. The efficiency of the system was thoroughly investigated through a series of experiments conducted prior to the renovation of the building as well as after the museum was put into service. The application of the described system resulted in substantial reduction of energy consumption, better internal thermal conditions and lower investment costs for the Heating, Ventilation and Air Conditioning (HVAC) system of the entire building. (C)2010 Journal of Mechanical Engineering. All rights reserved

    Thermal comfort in residential buildings with water based heating systems: a tool for selecting appropriate heat emitters when using µ-cogeneration

    Get PDF
    As a consequence of people becoming more aware of their impact on the environment, there is an increasing demand for low energy buildings. Forced by regulation, building envelopes are improving and heating and cooling systems with higher efficiencies are being installed. The public are willing to embrace these new technologies, as long as they do not affect the quality of their indoor environment. In this paper, an introduction to research on the realisation of the indoor thermal comfort in residential buildings with water based, low-energy heating systems is given. The basis for this work is a more realistic definition of comfort temperatures for residential buildings. Subsequently, appropriate heat emitters to realise that thermal comfort in an efficient way are identified, taking into account the limitations of the production system under consideration. An example of a µ-cogeneration system is presented as a case study

    Robust e-Voting Composition

    Get PDF

    Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems

    Full text link
    The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment
    corecore