37,418 research outputs found

    The Computational Complexity of Propositional Cirquent Calculus

    Full text link
    Introduced in 2006 by Japaridze, cirquent calculus is a refinement of sequent calculus. The advent of cirquent calculus arose from the need for a deductive system with a more explicit ability to reason about resources. Unlike the more traditional proof-theoretic approaches that manipulate tree-like objects (formulas, sequents, etc.), cirquent calculus is based on circuit-style structures called cirquents, in which different "peer" (sibling, cousin, etc.) substructures may share components. It is this resource sharing mechanism to which cirquent calculus owes its novelty (and its virtues). From its inception, cirquent calculus has been paired with an abstract resource semantics. This semantics allows for reasoning about the interaction between a resource provider and a resource user, where resources are understood in the their most general and intuitive sense. Interpreting resources in a more restricted computational sense has made cirquent calculus instrumental in axiomatizing various fundamental fragments of Computability Logic, a formal theory of (interactive) computability. The so-called "classical" rules of cirquent calculus, in the absence of the particularly troublesome contraction rule, produce a sound and complete system CL5 for Computability Logic. In this paper, we investigate the computational complexity of CL5, showing it is Σ2p\Sigma_2^p-complete. We also show that CL5 without the duplication rule has polynomial size proofs and is NP-complete

    A minimal classical sequent calculus free of structural rules

    Get PDF
    Gentzen's classical sequent calculus LK has explicit structural rules for contraction and weakening. They can be absorbed (in a right-sided formulation) by replacing the axiom P,(not P) by Gamma,P,(not P) for any context Gamma, and replacing the original disjunction rule with Gamma,A,B implies Gamma,(A or B). This paper presents a classical sequent calculus which is also free of contraction and weakening, but more symmetrically: both contraction and weakening are absorbed into conjunction, leaving the axiom rule intact. It uses a blended conjunction rule, combining the standard context-sharing and context-splitting rules: Gamma,Delta,A and Gamma,Sigma,B implies Gamma,Delta,Sigma,(A and B). We refer to this system M as minimal sequent calculus. We prove a minimality theorem for the propositional fragment Mp: any propositional sequent calculus S (within a standard class of right-sided calculi) is complete if and only if S contains Mp (that is, each rule of Mp is derivable in S). Thus one can view M as a minimal complete core of Gentzen's LK.Comment: To appear in Annals of Pure and Applied Logic. 15 page

    Contraction blockers for graphs with forbidden induced paths.

    Get PDF
    We consider the following problem: can a certain graph parameter of some given graph be reduced by at least d for some integer d via at most k edge contractions for some given integer k? We examine three graph parameters: the chromatic number, clique number and independence number. For each of these graph parameters we show that, when d is part of the input, this problem is polynomial-time solvable on P4-free graphs and NP-complete as well as W[1]-hard, with parameter d, for split graphs. As split graphs form a subclass of P5-free graphs, both results together give a complete complexity classification for Pℓ-free graphs. The W[1]-hardness result implies that it is unlikely that the problem is fixed-parameter tractable for split graphs with parameter d. But we do show, on the positive side, that the problem is polynomial-time solvable, for each parameter, on split graphs if d is fixed, i.e., not part of the input. We also initiate a study into other subclasses of perfect graphs, namely cobipartite graphs and interval graphs

    Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm

    Get PDF
    Many practical problems in almost all scientific and technological disciplines have been classified as computationally hard (NP-hard or even NP-complete). In life sciences, combinatorial optimization problems frequently arise in molecular biology, e.g., genome sequencing; global alignment of multiple genomes; identifying siblings or discovery of dysregulated pathways.In almost all of these problems, there is the need for proving a hypothesis about certain property of an object that can be present only when it adopts some particular admissible structure (an NP-certificate) or be absent (no admissible structure), however, none of the standard approaches can discard the hypothesis when no solution can be found, since none can provide a proof that there is no admissible structure. This article presents an algorithm that introduces a novel type of solution method to "efficiently" solve the graph 3-coloring problem; an NP-complete problem. The proposed method provides certificates (proofs) in both cases: present or absent, so it is possible to accept or reject the hypothesis on the basis of a rigorous proof. It provides exact solutions and is polynomial-time (i.e., efficient) however parametric. The only requirement is sufficient computational power, which is controlled by the parameter αN\alpha\in\mathbb{N}. Nevertheless, here it is proved that the probability of requiring a value of α>k\alpha>k to obtain a solution for a random graph decreases exponentially: P(α>k)2(k+1)P(\alpha>k) \leq 2^{-(k+1)}, making tractable almost all problem instances. Thorough experimental analyses were performed. The algorithm was tested on random graphs, planar graphs and 4-regular planar graphs. The obtained experimental results are in accordance with the theoretical expected results.Comment: Working pape
    corecore