22 research outputs found

    Finite automata with advice tapes

    Full text link
    We define a model of advised computation by finite automata where the advice is provided on a separate tape. We consider several variants of the model where the advice is deterministic or randomized, the input tape head is allowed real-time, one-way, or two-way access, and the automaton is classical or quantum. We prove several separation results among these variants, demonstrate an infinite hierarchy of language classes recognized by automata with increasing advice lengths, and establish the relationships between this and the previously studied ways of providing advice to finite automata.Comment: Corrected typo

    Inkdots as advice for finite automata

    Full text link
    We examine inkdots placed on the input string as a way of providing advice to finite automata, and establish the relations between this model and the previously studied models of advised finite automata. The existence of an infinite hierarchy of classes of languages that can be recognized with the help of increasing numbers of inkdots as advice is shown. The effects of different forms of advice on the succinctness of the advised machines are examined. We also study randomly placed inkdots as advice to probabilistic finite automata, and demonstrate the superiority of this model over its deterministic version. Even very slowly growing amounts of space can become a resource of meaningful use if the underlying advised model is extended with access to secondary memory, while it is famously known that such small amounts of space are not useful for unadvised one-way Turing machines.Comment: 14 page

    Verifying Time Complexity of Deterministic Turing Machines

    Full text link
    We show that, for all reasonable functions T(n)=o(nlogn)T(n)=o(n\log n), we can algorithmically verify whether a given one-tape Turing machine runs in time at most T(n)T(n). This is a tight bound on the order of growth for the function TT because we prove that, for T(n)(n+1)T(n)\geq(n+1) and T(n)=Ω(nlogn)T(n)=\Omega(n\log n), there exists no algorithm that would verify whether a given one-tape Turing machine runs in time at most T(n)T(n). We give results also for the case of multi-tape Turing machines. We show that we can verify whether a given multi-tape Turing machine runs in time at most T(n)T(n) iff T(n0)<(n0+1)T(n_0)< (n_0+1) for some n0Nn_0\in\mathbb{N}. We prove a very general undecidability result stating that, for any class of functions F\mathcal{F} that contains arbitrary large constants, we cannot verify whether a given Turing machine runs in time T(n)T(n) for some TFT\in\mathcal{F}. In particular, we cannot verify whether a Turing machine runs in constant, polynomial or exponential time.Comment: 18 pages, 1 figur

    Nondeterministic one-tape off-line Turing machines and their time complexity

    Full text link
    In this paper we consider the time and the crossing sequence complexities of one-tape off-line Turing machines. We show that the running time of each nondeterministic machine accepting a nonregular language must grow at least as n\log n, in the case all accepting computations are considered (accept measure). We also prove that the maximal length of the crossing sequences used in accepting computations must grow at least as \log n. On the other hand, it is known that if the time is measured considering, for each accepted string, only the faster accepting computation (weak measure), then there exist nonregular languages accepted in linear time. We prove that under this measure, each accepting computation should exhibit a crossing sequence of length at least \log\log n. We also present efficient implementations of algorithms accepting some unary nonregular languages.Comment: 18 pages. The paper will appear on the Journal of Automata, Languages and Combinatoric
    corecore