15 research outputs found

    Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property

    Get PDF
    Based on the concept of losslessness in digital filter structures, this paper derives a general class of maximally decimated M-channel quadrature mirror filter banks that lead to perfect reconstruction. The perfect-reconstruction property guarantees that the reconstructed signalhat{x} (n)is a delayed version of the input signal x (n), i.e.,hat{x} (n) = x (n - n_{0}). It is shown that such a property can be satisfied if the alias component matrix (AC matrix for short) is unitary on the unit circle of the z plane. The number of channels M is arbitrary, and when M is two, the results reduce to certain recently reported 2-channel perfect-reconstruction QMF structures. A procedure, based on recently reported FIR cascaded-lattice structures, is presented for optimal design of such FIR M-channel filter banks. Design examples are included

    M-Band Burt–Adelson Biorthogonal Wavelets

    Get PDF
    AbstractFor every integer M>2 we introduce a new family of biorthogonal MRAs with dilation factor M, generated by symmetric scaling functions with small support. This construction generalizes Burt–Adelson biorthogonal 2-band wavelets. For M∈{3,4} we are able to find simple explicit expressions for two different families of wavelets associated with these MRAs: one with better localization and the other with interesting symmetry–antisymmetry properties. We study the regularity of our scaling functions by determining their Sobolev exponent, for every value of the parameter and every M. We also study the critical exponent when M=3

    Tree-structured complementary filter banks using all-pass sections

    Get PDF
    Tree-structured complementary filter banks are developed with transfer functions that are simultaneously all-pass complementary and power complementary. Using a formulation based on unitary transforms and all-pass functions, we obtain analysis and synthesis filter banks which are related through a transposition operation, such that the cascade of analysis and synthesis filter banks achieves an all-pass function. The simplest structure is obtained using a Hadamard transform, which is shown to correspond to a binary tree structure. Tree structures can be generated for a variety of other unitary transforms as well. In addition, given a tree-structured filter bank where the number of bands is a power of two, simple methods are developed to generate complementary filter banks with an arbitrary number of channels, which retain the transpose relationship between analysis and synthesis banks, and allow for any combination of bandwidths. The structural properties of the filter banks are illustrated with design examples, and multirate applications are outlined

    Vector space framework for unification of one- and multidimensional filter bank theory

    Get PDF
    A number of results in filter bank theory can be viewed using vector space notations. This simplifies the proofs of many important results. In this paper, we first introduce the framework of vector space, and then use this framework to derive some known and some new filter bank results as well. For example, the relation among the Hermitian image property, orthonormality, and the perfect reconstruction (PR) property is well-known for the case of one-dimensional (1-D) analysis/synthesis filter banks. We can prove the same result in a more general vector space setting. This vector space framework has the advantage that even the most general filter banks, namely, multidimensional nonuniform filter banks with rational decimation matrices, become a special case. Many results in 1-D filter bank theory are hence extended to the multidimensional case, with some algebraic manipulations of integer matrices. Some examples are: the equivalence of biorthonormality and the PR property, the interchangeability of analysis and synthesis filters, the connection between analysis/synthesis filter banks and synthesis/analysis transmultiplexers, etc. Furthermore, we obtain the subband convolution scheme by starting from the generalized Parseval's relation in vector space. Several theoretical results of wavelet transform can also be derived using this framework. In particular, we derive the wavelet convolution theorem

    Multiresolution models of financial time series

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (leaves 89-92).by Paul Stephan Mashikian.M.Eng

    Vector space framework for unification of one- and multidimensional filter bank theory

    Full text link

    A Study Of Equatorial Ionopsheric Variability Using Signal Processing Techniques

    Get PDF
    The dependence of equatorial ionosphere on solar irradiances and geomagnetic activity are studied in this dissertation using signal processing techniques. The statistical time series, digital signal processing and wavelet methods are applied to study the ionospheric variations. The ionospheric data used are the Total Electron Content (TEC) and the critical frequency of the F2 layer (foF2). Solar irradiance data are from recent satellites, the Student Nitric Oxide Explorer (SNOE) satellite and the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite. The Disturbance Storm-Time (Dst) index is used as a proxy of geomagnetic activity in the equatorial region. The results are summarized as follows. (1) In the short-term variations ≤ 27-days, the previous three days solar irradiances have significant correlation with the present day ionospheric data using TEC, which may contribute 18% of the total variations in the TEC. The 3-day delay between solar irradiances and TEC suggests the effects of neutral densities on the ionosphere. The correlations between solar irradiances and TEC are significantly higher than those using the F10.7 flux, a conventional proxy for short wavelength band of solar irradiances. (2) For variations ≤ 27 days, solar soft X-rays show similar or higher correlations with the ionosphere electron densities than the Extreme Ultraviolet (EUV). The correlations between solar irradiances and foF2 decrease from morning (0.5) to the afternoon (0.1). (3) Geomagnetic activity plays an important role in the ionosphere in short-term variations ≤ 10 days. The average correlation between TEC and Dst is 0.4 at 2-3, 3-5, 5-9 and 9-11 day scales, which is higher than those between foF2 and Dst. The correlations between TEC and Dst increase from morning to afternoon. The moderate/quiet geomagnetic activity plays a distinct role in these short-term variations of the ionosphere (~0.3 correlation)
    corecore