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For every integerM > 2 we introduce a new family of biorthogonal MRAs with
dilation factorM , generated by symmetric scaling functions with small support.
This construction generalizes Burt–Adelson biorthogonal 2-band wavelets. For
M ∈ {3,4} we are able to find simple explicit expressions for two different families
of wavelets associated with these MRAs: one with better localization and the other
with interesting symmetry–antisymmetry properties. We study the regularity of our
scaling functions by determining their Sobolev exponent, for every value of the
parameter and everyM . We also study the critical exponent whenM = 3.  2000
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1. INTRODUCTION

In this paper we present the construction of new families of compactly supported
biorthogonal scaling functions with dilation factorM which are symmetric and have small
support. The interest in MRA structures with dilation factor greater than 2 [4, 14, 15, 23,
30] is motivated by the theory ofM-band channel subband coding schemes [3, 14, 15, 27]
and by the attempt to obtain sharper time-frequency localization and greater flexibility in
the construction of wavelets. The design of the filters is quite different from the classical
case (M = 2): it is, in general, more difficult, and the wavelets are no longer determined,
in an essentially unique manner, by a pair of biorthogonal MRAs.

In [23] Soardi considered splineM-band primal scaling functions of arbitrary degree
and constructed dual scaling functions having arbitrarily high regularity. The spline case
is a natural choice, but it is only one possibility out of many others which could be
better suited for specific purposes. In view of possible applications, it is natural to seek a
“good” compromise between regularity, support width, vanishing moments, and symmetry
properties. In theM = 2 setting, the spline wavelets are quite popular in digital image
processing, but the generalization to theM-band setting proposed in [23] has the drawback
of having complicated dual filters and wavelets with large support widths. Other well-
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known 2-band biorthogonal wavelets are the Burt–Adelson wavelets [5, 10, 18]. They
are generated by a one (real) parameter family of symmetric filters, with small support,
but enough regularity and vanishing moments to make them a good choice in specific
applications. The regularity of the dual wavelets (as well as the number of vanishing
moments of some primal wavelets) can also be improved by considering extended and
maximally smooth dual filters constructed and studied in [18].

In this paper we present a naturalM-band generalization of classical Burt–Adelson
filters. We are able to construct a one real parameter family of primal and dual scaling
functions for any integerM ≥ 2, and forM ∈ {3,4} we also find a simple explicit
expression for two different families of wavelets filters. The ones in the first family have
small supports, while the ones in the second have interesting properties of symmetry: for
M = 3 we obtain a symmetric–antisymmetric pair and forM = 4 an antisymmetric and
two symmetric (with respect to different centers) wavelets. Both the small support width
and these symmetry properties are expected to be useful in applications.

Our construction can be compared with the one carried out by Chui and Lian
in [6], which led to 3-band orthonormal symmetric–antisymmetric wavelets with possibly
arbitrarily high regularity and also to two recent constructions of families ofM-band
wavelets by Belogay and Wang [2] and by Biet al. [3]. However, all these constructions
were carried out in the orthogonal case and suffer some of the drawbacks of that
setting.

In the second part of the paper we investigate the regularity of our scaling functions.
The caseM = 2 has been already fully studied by the author in [18]. Here, forM = 3 we
are able to determine the critical exponent of almost all our wavelets, and for anyM ≥ 3
we find the Sobolev exponents of all our scaling functions, which leads, in particular, to
finding sharp conditions for these scaling functions to generate biorthogonal unconditional
systems.

2. BIORTHOGONAL M-BAND WAVELET BASES

In this section, we briefly review some basic facts about the construction ofM-band
biorthogonal, compactly supported wavelets along the lines of [23].

A family of closed subspaces{Vj }j∈Z of L2(R) is said to be anM-band multiresolution
analysis if

• ⋃j Vj is dense inL2(R) and
⋂
j Vj = {0};

• Vj ∈ Vj+1 andf (·) ∈ Vj if and only if f (M·) ∈ Vj+1;
• there existsϕ ∈ V0 such that{ϕ(· − k)}k∈Z is a Riesz basis forV0.

There exist functions{ψl : l = 1, . . . ,M − 1} such that, if we let

ψj,k,l(·)=Mj/2ψl(M
j · −k),

the following orthogonality relations are satisfied,

〈ψj,k,l ,ψj ′,k′,l′ 〉 = δj,j ′δk,k′δl,l′,
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and the spaceWj , the orthogonal complement ofVj in Vj+1, is generated by
{ψj,k,l}l=1,...,M−1,k∈Z. SinceL2(R) = ⊕jWj , {ψj,k,l}j,k,l is an orthonormal basis for
L2(R).

In the biorthogonal setting, we have twoM-band MRAs,{Vj } and{Ṽj }, with associated
scaling functionsϕ, ϕ̃ and wavelets{ψl}, {ψ̃l}, which are biorthogonal in the sense that

〈ϕ(· − k), ϕ̃(· − k′)〉 = δk,k′

and

〈ψj,k,l , ψ̃j ′,k′,l′ 〉 = δj,j ′δk,k′δl,l′ .
As usual, the multiresolution structure forces the refinability of the scaling functions

ϕ̂(Mξ)=m0(ξ)ϕ̂(ξ), ˜̂ϕ(Mξ)= m̃0(ξ) ˜̂ϕ(ξ)

and, sinceψl ∈ V1, we have the relations

ψ̂l(Mξ)=ml(ξ)ψ̂l (ξ), ˜̂
ψl(Mξ)= m̃l(ξ) ˜̂ψl(ξ)

for suitable functionsm0,m1, . . . ,mM−1, m̃0, m̃1, . . . , m̃M−1 in L2(T) (called filters). We
consider here only{mj }, {m̃j }, which are trigonometric polynomials.

One can also start with anM-band subband coding scheme [14, 15, 26, 27] with filters

m0, . . . ,mM−1, m̃0, . . . , m̃M−1,

all trigonometric polynomials. By letting

ϑk = 2kπ

M
,

it is well known that the conditions for perfect reconstruction can be written as

M−1∑
l=0

ml(ξ)m̃l(ξ + ϑk)= δ0,k ∀k ∈ {0, . . . ,M − 1}. (2.1)

These equations imply (see Proposition 2 in [23]) the biorthogonality conditions

M−1∑
k=0

ml1(ξ + ϑk)m̃l2(ξ + ϑk)= δl1,l2 ∀l1, l2 ∈ {0, . . . ,M − 1}. (2.2)

We proceed by first designing the scaling function filtersm0 andm̃0, satisfying (2.1),
i.e.,

M−1∑
k=0

m0(ξ + ϑk)m̃0(ξ + ϑk)= 1. (2.3)

Once they have been established, one defines, via the usual product formulas,

ϕ̂(ξ)=
∞∏
k=0

m0

(
ξ

Mk

)
, ˆ̃ϕ(ξ)=

∞∏
k=0

m̃0

(
ξ

Mk

)
. (2.4)
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If these scaling functions belong toL2(R), we obtain a pair of biorthogonalM-band
MRAs. It is a well-known fact that families ofM-band, compactly supported, biorthogonal
wavelets associated with these MRAs exist and can actually be constructed by means of
matrix-based algorithms [21]. These wavelets have Fourier transform given by

ψ̂l (Mξ)=ml(ξ)ϕ̂(ξ), ˆ̃
ψl(Mξ)= m̃l(ξ) ˆ̃ϕ(ξ),

for l ∈ {1, . . . ,M − 1}, where allml, m̃l are trigonometric polynomials, satisfying the
conditions (2.2), and

ml(0)= 0= m̃l(0). (2.5)

In order to find an explicit expression for the wavelet filters, one can first look for dual
wavelet filters such that

CeiM(h+η)m0(ξ)=

∣∣∣∣∣∣∣
m̃1(ξ + ϑ1) . . . m̃M−1(ξ + ϑ1)

...
. . .

...

m̃1(ξ + ϑM−1) . . . m̃M−1(ξ + ϑM−1)

∣∣∣∣∣∣∣ (2.6)

for someC 6= 0 and an integerh, whereη= 0 if M − 1 is even, andη= 1 if M − 1 is odd.
After this, in Proposition 4 of [23] it is proved that, givenm0, m̃0, . . . , m̃M−1 satisfying
(2.3) and (2.6), there are unique trigonometric polynomialsm1, . . . ,mM−1 (obtained by
solving the linear system in (2.1)) such that the family

m0, . . . ,mM−1, m̃0, . . . , m̃M−1

has perfect reconstruction. The biorthogonality conditions (2.2) then follow and, if the
scaling functions (and hence the wavelets) are inL2(R), the fundamental theorem
by Cohen, Daubechies, and Faveau [9, 10, 19, 23] ensures that these filters generate
unconditional bases of biorthogonalM-band wavelets.

3. CONSTRUCTION OF M-BAND BURT–ADELSON SCALING FUNCTIONS

In this section we present the construction, for everyM ≥ 2, of a one-parameter family of
biorthogonal symmetric scaling functions with small support, which generalize the 2-band
family of Burt–Adelson scaling functions.

We look for scaling function filters,Mm0,a andMm̃0,a , depending on a real parametera,

Mm0,a(ξ)=
(

sin
(
Mξ
2

)
M sin

( ξ
2

))2(
a + (1− a)cosξ

)
(3.1)

and

Mm̃0,a(ξ)=
(

sin
(
Mξ
2

)
M sin

(
ξ
2

))2(
1− b1(a,M)− b2(a,M)

+ b1(a,M)cosξ + b2(a,M)cos2ξ
)
. (3.2)
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These filters automatically satisfy the high and low pass conditions

Mm0,a(0)= 1= Mm̃0,a(0),

Mm0,a(ϑk)= 0= Mm̃0,a(ϑk),

where, as before,ϑk = 2kπ/M.
The main issue is to prove the existence of a filterMm̃0,a as above which is dual to

Mm0,a , i.e., which satisfies the biorthogonality relation

M−1∑
k=0

Mm0,a(ξ + ϑk)Mm̃0,a(ξ + ϑk)= 1. (3.3)

THEOREM 3.1. For everyM ≥ 2 and everya /∈ {0,1}, there exist functionsb1(a,M),
b2(a,M) such that the filters(3.1)and(3.2)satisfy the relation(3.3).

Proof. The filters can be split into a spline factor and the residuals

MPa(ξ)= a + (1− a)cosξ, (3.4)

MP̃a(ξ)= 1− b1(a,M)− b2(a,M)+ b1(a,M)cosξ + b2(a,M)cos2ξ. (3.5)

The choice

b1(a,M)=−2
a − 2

a − 1
b2(a,M)

and simple manipulations yield

(MPa ·MP̃a)(ξ)= 8b2(a,M)(1− a)cosξ sin4 ξ

2

+2
(a− 1)2− 2ab2(a,M)

a − 1
sin2 ξ

2
+ 1.

Substituting this in (3.3) gives

M−1∑
k=0

(
sin
(
M(ξ+ϑk)

2

)
M sin

(
ξ+ϑk

2

) )4

(PaP̃a)(ξ + ϑk)

= 8b2(a,M)(1− a)sin4 Mξ
2

M4

M−1∑
k=0

cos(ξ + ϑk)

+2
(a− 1)2− 2ab2(a,M)

a − 1

sin2 Mξ
2

M2

M−1∑
k=0

(
sin
(M(ξ+ϑk)

2

)
M sin

(
ξ+ϑk

2

) )2

+
M−1∑
k=0

(
sin
(
M(ξ+ϑk)

2

)
M sin

(
ξ+ϑk

2

) )4

=
(

1− βM − 2
(a − 1)2− 2ab2(a,M)

2M2(a − 1)

)
cosMξ + βM

+2
(a− 1)2− 2ab2(a,M)

2M2(a − 1)
,
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since
M−1∑
k=0

cos(ξ + ϑk)= 0,

M−1∑
k=0

(
sin
(M(ξ+ϑk)

2

)
M sin

(
ξ+ϑk

2

) )2

= 1,

and
M−1∑
k=0

(
sin
(
M(ξ+ϑk)

2

)
M sin

(
ξ+ϑk

2

) )4

= βM + (1− βM)cosMξ,

for someβM , depending only onM. We obtain the desired relation (3.3) by choosing
b2(a,M) such that

1− βM − (a − 1)2− 2ab2(a,M)

M2(a − 1)
= 0,

i.e.,

b2(a,M)= (a − 1)(a +M2(βM − 1)− 1)

2a
. (3.6)

This is possible (in a unique manner) for everyβM and for everya /∈ {0,1}.
In view of (3.6) we let

αM =M2(1− βM)+ 1, (3.7)

and in the following we will write the residual dual filters (3.6) in the form

MP̃a(ξ)= 1+ (a − 2)(a − αM)
a

− (a − 1)(a− αM)
2a

− (a − 2)(a − αM)
a

cos(ξ)+ (a − 1)(a − αM)
2a

cos(2ξ). (3.8)

Remark 3.1. The value ofβM can be found explicitly in the following way: we write

M−1∑
k=0

(
sin
(
M(ξ+ϑk)

2

)
M sin

(
ξ+ϑk

2

) )4

=
M−1∑
k=0

ei2(M−1)(ξ+ϑk)
(

1+ e−i(ξ+ϑk) + · · · + e−i(M−1)(ξ+ϑk)

M

)4

= 1

M4

M−1∑
k=0

e2i(M−1)(ξ+ϑk) ∑
l0+···+lM−1=4

(
4

l0 . . . lM−1

)M−1∏
j=1

eij lj (ξ+ϑk)

= 1

M4

∑
l0+···+lM−1=4

(
4

l0 . . . lM−1

)M−1∑
k=0

e
i(
∑M−1
j=1 j lj−2(M−1))(ξ+ϑk).

To getβM , we have to keep the only nonconstant term in this last expression, which is
obtained when

∑M−1
j=1 j lj = 2(M − 1):

βM = 1

M3

∑
l0+···+lM−1=4∑M−1
j=1 jlj=2(M−1)

(
4

l0 . . . lM−1

)
. (3.9)
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FIG. 1. 4ϕ6/5 and4ϕ̃6/5.

These scaling functions, when inL2(R), generate biorthogonal MRAs, and, as explained
above, general theorems guarantee the existence of associated wavelets. In the next two
sections we find explicitly two families of wavelets in the caseM ∈ {3,4} which have
good properties in terms of support width and symmetry.

Let us observe that

suppϕ =
[
− M

M − 1
,

M

M − 1

]
, suppϕ̃ =

[
−M + 1

M − 1
,
M + 1

M − 1

]
.

In particular, for largeM the primal and dual scaling functions have similar support width.
We plot in Figs. 1–4 some of the 4-band scaling functions corresponding toa ∈
{65, a∗, 14

5 ,
7
2}, where

a∗ = −19+√1441

10
(“almost orthogonal” case).

In Figs. 5–7 we plot some examples of our 5,6,8-band scaling functions.

FIG. 2. 4ϕa∗ and4ϕ̃a∗ .
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FIG. 3. 4ϕ14/5 and4ϕ̃14/5.

FIG. 4. 4ϕ7/2 and4ϕ̃7/2.

FIG. 5. 5ϕ3 and5ϕ̃3.
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FIG. 6. 6ϕ5/2 and6ϕ̃5/2.

4. CONSTRUCTION OF THE WAVELET FILTERS FOR M = 3

In this section we specialize the construction of the previous section to the caseM = 3
in order to explicitly construct wavelet families associated with our MRAs.

The dual scaling function filters are

3m̃0,a(ξ)=
(

sin
(3ξ

2

)
3 sin

(
ξ
2

))2(
3a2− 14a+ 33

6a
− (a − 2)(3a− 11)

3a
cosξ

+ (a − 1)(3a− 11)

6a
cos2ξ

)
. (4.1)

By (2.2), the dual wavelet filters should satisfy (see [23])

Ce3ihξ
3m0,a(ξ)=

∣∣∣∣ 3m̃1,a(ξ + ϑ1) 3m̃2,a(ξ + ϑ1)

3m̃1,a(ξ + ϑ2) 3m̃2,a(ξ + ϑ2)

∣∣∣∣ (4.2)

FIG. 7. 8ϕ5/2 and8ϕ̃5/2.
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for some constantC 6= 0 and an integerh. Since we can write

3m0,a(ξ)=
(

4

3

)2
(

2∏
k=1

cos2
(
ξ

2
+ kπ

3
+ π

2

))
3Pa(ξ)

we look for3m̃j,a , j ∈ {1, . . . ,2}, of the form

3m̃j,a(ξ)= 4

3
cos2

(
ξ + π

2

)
3P̃j,a(ξ),

so that, when computing the determinant in (4.2), the first factors make up for the spline
term ofm0,a. Now we have to find3P̃j,a , which satisfies

Ce3ihξ
3Pa(ξ)=

∣∣∣∣∣ 3P̃1,a(ξ + ϑ1) 3P̃2,a(ξ + ϑ1)

3P̃1,a(ξ + ϑ2) 3P̃2,a(ξ + ϑ2)

∣∣∣∣∣ . (4.3)

By trying 3P̃j,a having at most three coefficients, in order to minimize the support length,
but at the same time allowing symmetric filters, we find

3P̃
I
1,a(ξ)=

1− a
2a
− eiξ , (4.4)

3P̃
I
2,a(ξ)= ae−iξ +

a − 1

2
=−a3P̃

I
1,a(ξ). (4.5)

There also exist short filters which give a pair of symmetric–antisymmetric wavelets:

3P̃
II
1,a(ξ)=

1

2
(a − 1)+ a cos(ξ), (4.6)

3P̃
II
2,a(ξ)= 2 sin(ξ). (4.7)

The primal filters3mIj,a and3m
II
j,a are obtained by solving the linear system (2.1) (please

check the author’s Web page for the explicit solutions). We remark here that3m
II
1,a is even,

while 3m
II
2,a is odd. Hence the primal wavelets enjoy the same symmetry properties as the

dual ones. This can be seen by solving the linear system (2.1) using Cramer’s rule, and
observing that

3m
II
1,a(−ξ)=

∣∣∣∣∣ 3m̃0,a(−ξ + ϑ1) 3m̃
II
2,a(−ξ + ϑ1)

3m̃0,a(−ξ + ϑ2) 3m̃
II
2,a(−ξ + ϑ2)

∣∣∣∣∣
=
∣∣∣∣∣ 3m̃0,a(ξ − ϑ1) 3m̃

II
2,a(ξ − ϑ1)

−3m̃0,a(ξ − ϑ2) −3m̃
II
2,a(ξ − ϑ2)

∣∣∣∣∣
=
∣∣∣∣∣ 3m̃0,a(ξ + ϑ2) 3m̃

II
2,a(ξ + ϑ2)

−3m̃0,a(ξ + ϑ1) −3m̃
II
2,a(ξ + ϑ1)

∣∣∣∣∣=3m
II
1,a(ξ), (4.8)

where we have used the symmetry of3m̃0,a and the antisymmetry of3m̃2,a as well. The
same trick shows that3m

II
2,a is antisymmetric.
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5. CONSTRUCTION OF THE WAVELET FILTERS FOR M = 4

In this section we construct explicitly two wavelet families in the caseM = 4.
The dual scaling function filters we constructed in Section 3 are

4m̃0,a(ξ)=
(

sin
(
Mξ
2

)
M sin

(
ξ
2

))2(
a2− 7a + 18

2a
− (a − 2)(a − 6)

a
cosξ

+ (a − 2)(a − 6)

2a
cos2ξ

)
. (5.1)

By reasoning in the same way as in Section 4, we look for4m̃j,a , j ∈ {1, . . . ,3}, in the
form

4m̃j,a(ξ)= 4

3
cos2

(
ξ + π

2

)
4P̃j,a(ξ),

with 4P̃j,a satisfying

Ce2ihξ
4Pa(ξ)=

∣∣∣∣∣∣∣
4P̃1,a(ξ + ϑ1) 4P̃2,a(ξ + ϑ1) 4P̃3,a(ξ + ϑ1)

4P̃1,a(ξ + ϑ2) 4P̃2,a(ξ + ϑ2) 4P̃3,a(ξ + ϑ2)

4P̃1,a(ξ + ϑ3) 4P̃2,a(ξ + ϑ3) 4P̃3,a(ξ + ϑ3)

∣∣∣∣∣∣∣ . (5.2)

It turns out that, among various possible choices, we can keep two of the wavelet filters
corresponding to theM = 3 case (see formulas (4.5) and (4.7)) and add a third wavelet. In
this way we obtain

4P̃
I
1,a(ξ)=

1− a
2a
− eiξ , (5.3)

4P̃
I
2,a(ξ)= ae−iξ +

1− a
2

, (5.4)

4P̃
I
3,a(ξ)= e2iξ , (5.5)

or

4P̃
II
1,a(ξ)=

1

2
(a − 1)+ a cos(ξ), (5.6)

4P̃
II
2,a(ξ)= 2 sin(ξ), (5.7)

4P̃
II
3,a(ξ)= ei2ξ . (5.8)

We see that the first two primal filters enjoy exactly the same properties (of length
and symmetry) as those in the caseM = 3, while the third filter is very short (only
three coefficients). Proving that (5.2) is satisfied with these choices is a matter of simple
computations.

The primal filters 4m
I
j,a and 4m

II
j,a are obtained, as usual, by solving the linear

system (2.1) (please see the author’s Web page for the detailed solution). We remark
here that the filters of the familyI have 13 coefficients, while the filters of familyII
have 17,17,13 coefficients, two symmetric (with respect to different axes) and one
antisymmetric, exactly as their duals are.
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6. CRITICAL AND SOBOLEV EXPONENTS OF M-BAND WAVELETS

The regularity of scaling functions generated by filters via the infinite product formula
(2.4) and, more in general, of solutions of refinement equations of the form

ϕ(x)=
K2∑

k=−K1

αkϕ(Mx − k) (6.1)

can be studied on the Fourier transform side by means of the critical and Sobolev exponents
b ands2, respectively. One introduces the trigonometric polynomial

m0(ξ)=
K2∑

k=−K1

αke
−ikξ (6.2)

and then studies the regularity of the distribution

ϕ̂(ξ)=
+∞∏
k=0

m0

(
ξ

Mk

)
(6.3)

in order to establish if it is the Fourier transform of someϕ in L1(R)∩L2(R), the solution
of (6.1).

We can always write

m0(ξ)=
(

1+ e−iξ + · · · + e−i(M−1)ξ

M

)N
L(ξ), (6.4)

for someN ≥ 0, and a trigonometric polynomialL such thatL(π) 6= 0. We will callL the
residual filter. It is clear that the first factor gives a decay of order|ξ |−N for |ξ | →∞ in the
product (6.3) that defineŝϕ. This decay competes with the growth of

∏
k L(ξ/Mk), which

one then tries to estimate.
The critical exponentb is defined by letting

b= inf
j
bj , (6.5)

where

bj = logM sup
ξ∈R

[
j−1∏
k=0

∣∣L(Mkξ)
∣∣]1/j

. (6.6)

One can prove the sharp pointwise estimate [7, 11]

|ϕ̂(ξ)| ≤ Cε(1+ |ξ |)−N+b+ε ,

for anyε > 0, and deduce from it global smoothness properties ofϕ. Lower bounds forb
are easily obtained by considering cycles for the mapτM on the unit circleS1 ' R/2πZ
in C, defined byτM(ξ) =Mξ (mod2π). Indeed, letγ = {ξ0, . . . , ξp−1} be a cycle for
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τM , i.e., ξr =Mrξ0 for r ∈ {1, . . . , p − 1} andMξp−1 = ξ0. Then (6.5) and (6.6) imply
immediately that

bγ := logM

[
p−1∏
k=0

∣∣L(ξk)∣∣]1/p

≤ b≤ sup
ξ

|L(ξ)|. (6.7)

These simple estimates have proven to be very effective. For example, the equality
b = bγ , γ = {−2π

3 ,
2π
3 }, holds for all Daubechies compactly supported wavelets [7, 8,

11, 29], and for classical Burt–Adelson wavelets the critical exponent is always given by
max{b{0}, b{−2π/3,2π/3}} [18].

The Sobolev exponent is defined as

s2(ϕ)= sup{s :ϕ ∈Hs},

where as usual

Hs =
{
f :‖f ‖2Hs =

∫
R
|f̂ (ξ)|2(1+ |ξ |2)s dξ <∞

}
.

This exponent gives more precise estimates for the regularity ofϕ, for example in the
Hölder sense, and of course it also allows us to determine exactly whether a function is in
L2(R). It is well known thats2 can be determined by studying the transition operator

MTP : C([0,1])→ C([0,1])

f 7→
M−1∑
k=0

P(ξ/M + ϑk)f (ξ/M + ϑk),

whereP = |L|2. In fact, the spectral radiusρ of TP is related tos2(ϕ) by the formula

s2(ϕ)=N − 1

2
logM ρ,

whereN is as in (6.4) [11–13, 16]. A most important fact is that the spectral radius ofTP

is the same as that of the restriction of the operator to certain invariant finite-dimensional
subspaces. More precisely, ifP is a cosine polynomial of degreeL, the distinguished
subspace

FL =
{

L∑
k=0

γk cos(kξ) : (γk)k ∈CL+1

}
(6.8)

is invariant under the action ofTP , and [12, 13]

ρ(TP |FL)= ρ(TP ),

so that the problem is reduced to finding the greatest eigenvalue ofTP |FL . This is the
technique we will use in the following sections to determines2 for all our scaling functions.

Finally, we recall the (sharp) estimate (see [7, 28])

N − b− 1

2
≤ s2 ≤N − b.
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6.1. Critical Exponent of Short 3-Band Filters

In this section we will always consider filters in the form

m0(ξ)=
(

sin
(3ξ

2

)
3 sin

(
ξ
2

))L+1

L(ξ), (6.9)

with m0(0)= 1, and

L(ξ)=
3∑

m=0

am cos(mξ) (6.10)

such thatL(ξ) ≥ 0 andL(π) 6= 0. We want to find the critical exponents of these filters.
The main result is the following

THEOREM 6.1. Supposem0 andL are as above. Letb be the critical exponent ofm0.
If a2≥ 0

b=
{

log3L(π) if a1+ a3≤ 0,
0 if a1+ a3≥ 0.

(6.11)

If a2≤ 0 and one of the following conditions is satisfied:

• 2a2≤ a1+ a3≤ 0,
• −2a2≥ a1+ a3≥ 0,

then

b = log3L
(
π

2

)
.

Remark 6.1. In the notation of (6.7), Theorem 6.1 says that, when any of the above
hypotheses are satisfied,

b =max{b(0), b(π), b(π/2,3π/2)}.

Proof. If a2≥ 0, we have the following chain of inequalities:(
j−1∏
k=0

L(3kξ)
)1/j

≤ a0+ a1
1

j

j−1∑
k=0

cos(3kξ)+ a2
1

j

j−1∑
k=0

cos(3k2ξ)+ a3
1

j

j−1∑
k=0

cos(3k+1ξ)

≤ a0+ (a1+ a3)
1

j

j−1∑
k=0

cos(3kξ)+ a2+O(1/j)

≤O(1/j)+
{
a0+ a1+ a2+ a3= L(0) if a1+ a3≥ 0,
a0− a1+ a2− a3= L(π) if a1+ a3≤ 0,

with O(1/j) uniform in ξ . Passing to the supremum on both sides and then lettingj to
infinity, we see that this inequality, together with (6.7), implies the first part of the theorem.
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Whena2≤ 0,(
j−1∏
k=0

L(3kξ)
)1/j

≤ a0+ (a1+ a3)
1

j

j−1∑
k=0

cos(3kξ)− a2+ 2a2
1

j

j−1∑
k=0

cos(3kξ)+O(1/j)

≤O(1/j)

+


L
(
π

2

)
− 2a2

1

j

j−1∑
k=0

(
cos(3kξ)− cos2(3kξ)

)
if −2a2≥ a1+ a3≥ 0,

L
(
π

2

)
+ 2a2

1

j

j−1∑
k=0

(
cos(3kξ)+ cos2(3kξ)

)
if 2a2≤ a1+ a3≤ 0.

The thesis follows as above, if we show that

lim
j→∞ sup

R

1

j

j−1∑
k=0

(
cos(3kξ)− cos2(3kξ)

)= 0, (6.12)

lim
j→∞ sup

R

1

j

j−1∑
k=0

(
cos(3kξ)+ cos2(3kξ)

)= 0. (6.13)

In order to prove (6.13), we solve the identity

|1+ eiξ + e2iξ + e3iξ |2= 4+ 6 cos(ξ)+ 4 cos(2ξ)+ 2 cos(3ξ)

for cos(2ξ) and substitute

1

j

j−1∑
k=0

(
cos(3kξ)+ cos2(3kξ)

)
= 1

j

j−1∑
k=0

(
cos(3kξ)+ 1

2
+ 1

2
cos(3k2ξ)

)

= 1

j

j−1∑
k=0

cos(3kξ)+ 1

2
+ 1

8j

j−1∑
k=0

|1+ e3kiξ + e3k2iξ + e3k+1iξ |2

− 1

2
− 3

4j

j−1∑
k=0

cos(3k2ξ)− 1

4j

j−1∑
k=1

cos(3kξ)

= 1

8j

j−1∑
k=0

|1+ e3kiξ + e3k2iξ + e3k+1iξ |2+O(1/j)

with O(1/j) uniform in ξ . Taking the inf of the last term leaves aO(1/j), which goes
to 0 asj goes to infinity, uniformly inξ . One can prove (6.12) in a completely analogous
manner, but starting with

|1+ eiξ + e2iξ + e3iξ |2= 4− 6 cos(ξ)+ 4 cos(2ξ)− 2 cos(3ξ).
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Remark 6.2. Theorem 6.1 is not exhaustive: as we shall see when we shall apply this
result in the study of the critical exponent of our 3-band scaling functions, there exist
nonnegative residual filters which do not satisfy any of the hypotheses.

6.2. Regularity of Burt–Adelson 3-Band Wavelets

We apply the results of the previous section to determine the critical exponent of the new
wavelets we have constructed. We also study the Sobolev exponents.

THEOREM 6.2. The critical exponentsba and b̃a of the primal and dual scaling
functions generated by the filters3m0,a , and3m̃0,a , defined in(3.1)and(4.1), respectively,
are

ba =
{

0 if 1
2 ≤ a ≤ 1,

log3(2a− 1) if a ≥ 1,

b̃a =
{

log3
6a2−31a+44

3a if 0< a ≤ 4
3 or a ≥ 11

3 ,

log3
11
3a if 3

2 ≤ a ≤ 11
3 .

The Sobolev exponentsas andãs of the primal and dual scaling functions are

sa = 2− 1

2
log3

(
9

2
a2− 3a + 3

2

)
s̃a = 1

a2

[
69

32
a4− 179

8
a3+ 4363

48
a2− 4015

24
a + 3993

32

+ 1

96
(77084865− 221467752a+ 292427476a2− 22463912a2

+1016141438a2− 32506872a5+ 6243588a6− 687096a7+ 33129a8)1/2
]
.

For

a ∈ Iadm
3 :=

(
0.8673947716,

1+ 4
√

10

3

)
,

the scaling functions3ϕa , 3ϕ̃a generated by3m0,a and3m̃0,a are inL2(R) and give rise
to biorthogonal MRAs. For these values ofa, any biorthogonal wavelet filters which
are trigonometric polynomials generate unconditional biorthogonal 3-band wavelets bases
for L2(R).

Proof. Let us recall the expressions of the residuals3P0,a and3P̃0,a

3P0,a(ξ)= a + (1− a)cosξ

3P̃0,a(ξ)= 3a2− 14a+ 33

6a
− (a − 2)(3a− 11)

3a
cosξ

+ (a − 1)(3a− 11)

3a
cos2ξ.

Since3P0,a is even and monotone on[0,π], its maximum is attained at 0 or atπ . On
the other hand,{π} is a cycle forτM , for any oddM, so estimate (6.7) (withL = 3P0,a)
givesba as desired. Observe that the same argument actually holds for any oddM (and
asymptotically for evenM, by considering the cycleγ = { Mπ

M+1,− Mπ
M+1}).
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FIG. 8. Regularity of 3-band Burt–Adelson primal scaling functions, together with the estimatesN − ba −
1/2≤ s2 ≤N − ba .

To study the positiveness of the dual residuals, we calculate

d

dξ3
P̃0,a =−3a− 11

3a
sinξ

(
2(a− 1)cosξ + 2− a).

We have flat points at 0,π , and, fora ∈ (−∞,0)∪ (4
3,∞), another local extrema at

ξa = arccos

(
a − 2

2(a − 1)

)
.

A simple computation yields

3P̃0,a(ξ a)=
3a2− 23a+ 12

12(1− a) ,

which is nonnegative for

a ∈
[

4

3
,

23+√385

6

]
.

Since

3P̃0,a(π)= 6a2− 31a+ 44

3a
≥ 0 iff a ∈ (0,∞),

we deduce that3P̃0,a(ξ)≥ 0 for all ξ if and only if

a ∈ ĨP :=
(

0,
23+√385

6

]
.

We apply Theorem 6.1 to determine the critical exponents for the dual residuals.
Following the notation of Theorem 6.1, we let

a1(a) := − (a − 2)(3a− 11)

3a
, a2(a) := (a − 1)(3a− 11)

6a
.
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FIG. 9. Regularity of 3-band Burt–Adelson dual scaling functions:N − b̃a − 1/2≤ s2≤N − b̃. The critical
exponentba has been plotted on(4/3,3/2) according to Conjecture 1.

Simple computations yield

a1(a)≥ 0 iff a ∈ (−∞,0)∪ [2, 11
3

]
,

a2(a)≥ 0 iff a ∈ (0,1] ∪ [11
3 ,∞

)
,

2a2(a)≤ a1(a)≤ 0 iff a ∈ [3
2,2
]∪ { 11

3

}
,

−2a2(a)≥ a1(a)≥ 0 iff a ∈ [2, 11
3

]
.

These relations and the restrictiona ∈ ĨP allow an application of Theorem 6.1 for

a ∈ (0,1] ∪ [3
2,∞

)
.

Fora ∈ [1, 4
3] it is easily shown that

sup
ξ

P̃0,a(ξ)= P̃0,a(π),

and hencẽba = log3P0,a(π) for these values ofa.
The continuity of the critical exponent and the guess that, at least for these filters of low

degree, the relationb = bγ holds for some short cycleγ leads to the following

CONJECTURE 1. We have

b̃a = log3 P̃0,a(π) for a ∈ [4
3,

3
2

]
.

The Sobolev exponent can be found by studying the spectral radii of the transition
operators3T|Pa |2 and 3T|P̃a |2 associated respectively to the primal and dual MRAs. As
explained before, we can consider the restrictions3T|Pa |2 |F2 and3T|P̃a |2 |F4 . Since

|Pa |2(ξ)= a2+ 2a(1− a)cosξ + (1− a)2 cos2 ξ,
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FIG. 10. 3ϕ13/10 and3ϕ̃13/10.

a matrix representation of3T|Pa |2 |F2, with respect to the bases{1,cos(·),cos2(·)} and
{1,cos(·),cos2(·)}, is the following,

9
2a

2− 3a + 3
2 0 0

· 3
4a

2+ 3
4a − 3

2 0

· · 0

 .
From this one easily deduces that the spectral radius of3T|Pa |2 |F2, and hence of3T|Pa |2,

is

ρ(3T|Pa |2)=
9

2
a2− 3a + 3

2
.

The calculations for the matrix representing3T|P̃a |2 |F4 are longer, but it is perhaps worth
noticing that the determination of the eigenvalues leads to an equation of order three (and
not five as one would expect): we will see later that also forM > 3 the kernel of3T|P̃a |2 |F4

is nontrivial. The characteristic equation can thus be solved algebraically, which leads to
the Sobolev exponent of the dual scaling functions.

Finally, to get the interval of admissibilityIadm
3 it is sufficient, by Cohen, Daubechies

and Faveau’s theorem [9, 10, 19, 23] to solve the system{s2 > 0, s̃2 > 0}. The first
inequality is satisfied for

a ∈
(

1− 4
√

10

3
,

1+ 4
√

10

3

)
and the second one for

a ∈ (0.8673947716,8.831599978).

The last assertion of the theorem then follows by taking the intersection of these two
intervals of admissibility.

We plot in Figs. 10–16 the scaling functions corresponding toa ∈ {13
10,
√

33
3 , 14

5 } and the
wavelets only fora = 14

5 , since the value ofa does not affect the qualitative structure of

the wavelets. The valuea =
√

33
3 minimizes theL2(T) distance betweenm0 andm̃0, and

the corresponding biorthogonal bases are expected to be nearly orthogonal. This could be a
good choice of wavelets for digital image processing, as is noted in theM = 2 case, in [1].
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FIG. 11. 3ϕ
√

33/3 and3ϕ̃
√

33/3.

FIG. 12. 3ϕ14/5 and3ϕ̃14/5.

FIG. 13. 3ψ
I
1,14/5 and3ψ̃

I
1,14/5.
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FIG. 14. 3ψ
I
2,14/5 and3ψ̃

I
2,14/5.

FIG. 15. 3ψ
II
1,14/5 and3ψ̃

II
1,14/5.

FIG. 16. 3ψ
II
2,14/5 and3ψ̃

II
2,14/5.
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6.3. Sobolev Exponent ofM-Band Burt–Adelson Scaling Function,M > 3

The key observation here is that since our residual filters are rather short, and their length
does not depend onM, the downsampling (byM) operation involved in the definition of

MTP makes it possible to find explicit algebraic expressions for the spectral radii of the
associated transition operators.

6.3.1. Regularity of the primal filters.We have

|Pa |2(ξ)= a2+ 2a(1− a)cosξ + (1− a)2 cos2 ξ,

so we can consider the restrictionMT|Pa |2 |F2. ForM ≥ 4, a matrix representation of this
restricted operator (with respect to the bases{1,cos(·),cos2(·)} and{1,cos(·),cos2(·)}) is
the following, 

3
2Ma

2− aM + M
2 0 0

· 0 0

· · 0

 . (6.14)

Here we have used the simple equalities

M−1∑
k=0

cos2(ξ + ϑk)= M
2
,

M−1∑
k=0

cos3(ξ + ϑk)= 0 if M > 3,

M−1∑
k=0

cos4(ξ + ϑk)= 3

8
M,

which can be derived by writing

M−1∑
k=0

cosl (ξ + ϑk)= 1

2l

M−1∑
k=0

l∑
j=0

(
l

j

)
eij (ξ+ϑk)e−i(l−j)(ξ+ϑk)

= 1

2l

l∑
j=0

(
l

j

)
ei(2j−l)ξ

M−1∑
k=0

ei(2j−l)ϑk .

We immediately deduce that

ρ(MT|Pa |2|F2)=
3

2
Ma2−Ma + M

2
, (6.15)

forM > 3. From the relation

s2= 2− 1

2
logM ρ(MT|Pa |2|F2),

we deduce that the admissibility inequalitys2> 0 is satisfied if and only if

a ∈
(

1

3
−
√

2

3
M3− 2

9
,

1

3
+
√

2

3
M3− 2

9

)
. (6.16)
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6.3.2. Regularity of the dual filters.The study of the spectral radius of the transition
operators associated with the dual filters is more involved. ForM ≥ 6 we will find a neat
expression for it, but whenM ∈ {4,5}, there seems to be no way to avoid some calculations.
We stress the fact that all of them can be carried out algebraically and present briefly their
results.

Recall that since|MP̃a |2 is a cosine polynomial of degree 4, we can study the restrictions

MT|MP̃a |2|F4. The matrix representing4T|4P̃a |2|F4 on the bases{1,cos(·),cos2(·)} and
{1,cos(·),cos(2·)} is almost lower triangular and the spectral radius is

ρ(4T|4P̃a |2|F4)=
1

a2

[
−273a2+ 435

4
a2+ 279+ 5

4
a4− 19a3

+ 1

4

(
779233a4− 2228664a3+ 1826064+ 57a8− 1752a7

+23182a6− 171760a5− 4040928a+ 3965112a2
)1/2]

,

so that the interval of admissibility for bothϕa andϕ̃a is

Iadm
4 :=

(
0.9165579310,

1+√385

3

)
.

WhenM = 5, similar computations lead to

ρ(5T|5P̃a |2|F4)=
5

8

2835− 2844a+ 1054a2− 148a3+ 7a4

a2 ,

from which we can deduce the interval of admissibility

Iadm
5 =

(
0.9694411335,

5+√30745

15

)
.

Finally, forM ≥ 6, we claim not only that the matrix representing (on the same bases
used above)MT|MP̃a |2|F4 is lower triangular, but also that the only nonzero entry on the
diagonal is the element(1,1). This means we have to prove that

MT|MP̃a |2|F4(cosl (·)) (6.17)

is a (cosine) polynomial of degree strictly less thanl, for eachl ∈ (1, . . . ,4}. To show this,
it is enough to observe that|MP̃a |2 has degree 4; hence (6.17) is a cosine polynomial of
degree less than or equal tob4+l

M
c< l. Hence the only nonzero eigenvalue is equal to the

entry(1,1) in the matrix, which is (αM is as in (3.7))

ρ(MT|MP̃a |2|F4)=
M

8

(
35α2

M + 7a4+ 19a2− 14a3αM − 46aαM + 7a2α2
M

a2

+ −30aα2
M − 22a3+ 52αMa2

a2

)
.

In particular, one can find the interval of admissibility for everyM by determiningαM and
solving an equation of order 4.

We plot in Figs. 17 and 18 the graphs representing the Sobolev regularity of the primal
and dual scaling functions forM ∈ {4,5,6,8}.
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FIG. 17. Sobolev exponent of primal (monotone decreasing) and dual scaling functions,M = 4,5.

7. COMMENTS AND APPLICATIONS

Our construction takes advantage of both the flexibility of the biorthogonal setting and
theM-band structure in order to design simpleM-band filters and different families of
wavelets which enjoy both good localization and good symmetry properties.

Some rather recent works are related to ours. Chui and Lian present in [6] some families
of 3-band symmetric–antisymmetric orthonormal wavelets with good (and possibly
arbitrarily high) regularity. Biet al. and Sun presented in [3], anM-band orthonormal,
compactly supported, cardinal scaling function, forM ≥ 3 (no such scaling functions exist
for M = 2). In [2], Belogay and Wang study families of symmetric orthonormal scaling
functions for any dilationM: some filters are given in explicit form and the regularity
of the associated wavelets is determined. Here, in the biorthogonal setting, we were able
to carry out a completely explicit construction for anyM, with very simple filters. Our
scaling functions have poor flexibility as far as smoothness is regarded, but one can take
advantage of the freedom in choosing a parameter corresponding to wavelets better suited
to a particular application.

We have in mind various applications in which these new families of wavelets, in
particular 3,4-band, are expected to be especially effective. The regularity, vanishing
moments, and support lengths of our wavelets seem to be particularly suited for digital
sound and image processing, but the combination of all these rather common properties
with the symmetry–antisymmetry of our wavelets should prove very important. In

FIG. 18. Sobolev exponent of primal (monotone decreasing) and dual scaling functions,M = 6,8.
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fact, these properties imply that an analysis performed by our wavelets will efficiently
split symmetric features of a signal from antisymmetric ones. For example, since the
human visual perception system seems to be less sensitive to symmetric errors than
to antisymmetric ones, improved (lossy) compression could be possibly achieved by
discarding symmetric and antisymmetric coefficients in a selective manner. Moreover, one
expects that near an edge, the coefficients of the antisymmetric wavelets and those of the
symmetric ones will behave quite differently, which could be used to effectively find edges
in images.
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