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For every integedM > 2 we introduce a new family of biorthogonal MRAs with
dilation factor M, generated by symmetric scaling functions with small support.
This construction generalizes Burt—Adelson biorthogonal 2-band wavelets. For
M € {3, 4} we are able to find simple explicit expressions for two different families
of wavelets associated with these MRASs: one with better localization and the other
with interesting symmetry—antisymmetry properties. We study the regularity of our
scaling functions by determining their Sobolev exponent, for every value of the
parameter and ever. We also study the critical exponent wh@h=3. 0 2000
Academic Press
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1. INTRODUCTION

In this paper we present the construction of new families of compactly supported
biorthogonal scaling functions with dilation factdf which are symmetric and have small
support. The interest in MRA structures with dilation factor greater than 2 [4, 14, 15, 23,
30] is motivated by the theory a@ff-band channel subband coding schemes [3, 14, 15, 27]
and by the attempt to obtain sharper time-frequency localization and greater flexibility in
the construction of wavelets. The design of the filters is quite different from the classical
case (1 = 2): it is, in general, more difficult, and the wavelets are no longer determined,
in an essentially unique manner, by a pair of biorthogonal MRAs.

In [23] Soardi considered splin&-band primal scaling functions of arbitrary degree
and constructed dual scaling functions having arbitrarily high regularity. The spline case
is a natural choice, but it is only one possibility out of many others which could be
better suited for specific purposes. In view of possible applications, it is natural to seek a
“good” compromise between regularity, support width, vanishing moments, and symmetry
properties. In theM = 2 setting, the spline wavelets are quite popular in digital image
processing, but the generalization to tieband setting proposed in [23] has the drawback
of having complicated dual filters and wavelets with large support widths. Other well-
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known 2-band biorthogonal wavelets are the Burt—-Adelson wavelets [5, 10, 18]. They

are generated by a one (real) parameter family of symmetric filters, with small support,

but enough regularity and vanishing moments to make them a good choice in specific
applications. The regularity of the dual wavelets (as well as the number of vanishing

moments of some primal wavelets) can also be improved by considering extended and
maximally smooth dual filters constructed and studied in [18].

In this paper we present a natur-band generalization of classical Burt—Adelson
filters. We are able to construct a one real parameter family of primal and dual scaling
functions for any integetM > 2, and for M € {3,4} we also find a simple explicit
expression for two different families of wavelets filters. The ones in the first family have
small supports, while the ones in the second have interesting properties of symmetry: for
M = 3 we obtain a symmetric—antisymmetric pair and #6r= 4 an antisymmetric and
two symmetric (with respect to different centers) wavelets. Both the small support width
and these symmetry properties are expected to be useful in applications.

Our construction can be compared with the one carried out by Chui and Lian
in [6], which led to 3-band orthonormal symmetric—antisymmetric wavelets with possibly
arbitrarily high regularity and also to two recent constructions of familiegfeband
wavelets by Belogay and Wang [2] and by &ial. [3]. However, all these constructions
were carried out in the orthogonal case and suffer some of the drawbacks of that
setting.

In the second part of the paper we investigate the regularity of our scaling functions.
The caseV = 2 has been already fully studied by the author in [18]. Here Mot 3 we
are able to determine the critical exponent of almost all our wavelets, and favany
we find the Sobolev exponents of all our scaling functions, which leads, in particular, to
finding sharp conditions for these scaling functions to generate biorthogonal unconditional
systems.

2. BIORTHOGONAL M-BAND WAVELET BASES

In this section, we briefly review some basic facts about the constructiam-band
biorthogonal, compactly supported wavelets along the lines of [23].

A family of closed subspacd¥;} ;<7 of L2(R) is said to be a/-band multiresolution
analysis if

e U, V;isdense irL2(R) and(); v; ={0};
e VieViprandf()eV;ifandonlyif f(M-) e Vjy1;
e there exist® € Vg such thafp(- — k)}rez is a Riesz basis fovp.

There exist functiongy; :1 =1, ..., M — 1} such that, if we let
Yk () =My M7 k),

the following orthogonality relations are satisfied,

(i Ujrw ) =38, j Sk xdir,
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and the spaceW;, the orthogonal complement oV; in V;;1, is generated by

LZR).
In the biorthogonal setting, we have twé-band MRAs {V;} and{f/j}, with associated
scaling functionsy, ¢ and wavelet$y;}, {;}, which are biorthogonal in the sense that

(0 = k), (- = k) =S
and
Wikt Vjraew) =8y Skardir.
As usual, the multiresolution structure forces the refinability of the scaling functions
PME) =moE)§(E),  §(ME) =ro(E)§ (&)

and, since); € V1, we have the relations

DiME) =my @), b (ME) = (€)Y, (€)

for suitable functionsg, m1, ..., my—1, fg, M1, . . ., my—1 in L2(T) (called filters). We
consider here onlym }, {rm ;}, which are trigonometric polynomials.
One can also start with alf-band subband coding scheme [14, 15, 26, 27] with filters

mo,...,my—1,M0,...,Mpy—1,

all trigonometric polynomials. By letting

it is well known that the conditions for perfect reconstruction can be written as

M-1
mi(§)mi(§ + k) =8k  Vke{0,...,.M -1} (2.1)
1=

These equations imply (see Proposition 2 in [23]) the biorthogonality conditions

M-1

D miE +00m,(E+ 00 =8, Vi, le{0,...,M—1}. (2.2)
k=0

We proceed by first designing the scaling function filtexs and g, satisfying (2.1),
ie.,
M-1
D mo(€ + v)io(E + i) = 1. (2.3)
k=0
Once they have been established, one defines, via the usual product formulas,

¢(§)=Hmo<%), é(é)=1‘[n~m(%). (2.4)
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If these scaling functions belong fo?(R), we obtain a pair of biorthogonal/-band

MRAs. It is a well-known fact that families aff-band, compactly supported, biorthogonal
wavelets associated with these MRAs exist and can actually be constructed by means of
matrix-based algorithms [21]. These wavelets have Fourier transform given by

YI(ME) =m(§)§ (&), Vi (ME) =11 (§)P(6),
for 1 € {1,...,M — 1}, where allm;, m; are trigonometric polynomials, satisfying the
conditions (2.2), and

In order to find an explicit expression for the wavelet filters, one can first look for dual
wavelet filters such that

mi§ +v1) ... my-1(6 +V1)
CeMP+Mp08) = : : (2.6)
mi§ +9y-1) ... my-1(6+0n-1)

for someC # 0 and an integel, wheren =0 if M — 1iseven,and = 1if M — 1is odd.
After this, in Proposition 4 of [23] it is proved that, givemg, g, . .., m 1 Satisfying
(2.3) and (2.6), there are unique trigonometric polynomials. . ., my—1 (obtained by
solving the linear system in (2.1)) such that the family

mo, ..., Mmy—1,M0Q, ..., Mpy—1

has perfect reconstruction. The biorthogonality conditions (2.2) then follow and, if the
scaling functions (and hence the wavelets) arelL#(R), the fundamental theorem

by Cohen, Daubechies, and Faveau [9, 10, 19, 23] ensures that these filters generate
unconditional bases of biorthogondl-band wavelets.

3. CONSTRUCTION OF M-BAND BURT-ADELSON SCALING FUNCTIONS

In this section we present the construction, for evry 2, of a one-parameter family of
biorthogonal symmetric scaling functions with small support, which generalize the 2-band
family of Burt—Adelson scaling functions.

We look for scaling function filtersymo , andasmo ., depending on a real parameder

sin(%%) \°
MmO,a(§)=<m (a—l—(l—a)COSS) (3.1)
and
i sin(4%) \°
mmoa(§) = | ——= (1—bi(a, M) — ba(a, M)
M sin(3)

+ bi(a, M) CcoSt + bo(a, M)COSZ). (3.2)
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These filters automatically satisfy the high and low pass conditions
MMOQO,aq O =1= M"hO,a 0,
mmo,qa(Vx) = 0= ymo (),

where, as before}, = 2kw /M.
The main issue is to prove the existence of a fil{giio, as above which is dual to
Mmmo.q, i.e., which satisfies the biorthogonality relation

M-1

> umoa(E + 9 mioaE + k) =1 (3.3)
k=0

THEOREM 3.1. For everyM > 2 and every ¢ {0, 1}, there exist functionds(a, M),
ba(a, M) such that the filter§3.1) and (3.2) satisfy the relatior{3.3).

Proof. The filters can be split into a spline factor and the residuals

mPa(§) =a+ (1—a)coss, (3.4)
M Pa(8) =1—bi(a, M) — ba(a, M) + bi(a, M) COSt + bo(a, M)cosZ.  (3.5)

The choice

bi(a, M) =—

-2
— bala. M)

and simple manipulations yield

(11 Pa - 11 ) (E) = 8b(a, M) (L — a) COSt sin“%

(a — 12— 2aby(a, M) n2 g
a—1
Substituting this in (3.3) gives

M-1 sin(M(f;—ﬂk)) 4 }
Y=L ) PaP)GE+90)

k=0 Ms'”(H—zﬁk)

MM

= 8ba(a, M)(l—a) 4 Z cos§ + %)

,@—1)? — 2abs(a, M) S MT MZ sin( M)\ 2
a-1 M sin(5£5%)

M-1 Sin(M($+z9k)) 4
- Z (Msin(@) >
k=0 2

B (a — 1) — 2aby(a, M)
_<1_’3M_2 2M2(a — 1)

(a —1)2 = 2aby(a, M)
2M2(a — 1) ’

) COSME + By

+2
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since
M-1
D cosé + 9 =0,
k=0
M-1 sm(M(S—H?k)) .
,; M sin( &%) v
and

ML [ sin( MER) )
SM™>—) ) _ . e
1§><Msin(5+_2ﬁk)> Pum + (1 — Bu)cosMg

for some g, depending only on/. We obtain the desired relation (3.3) by choosing
bo(a, M) such that

(a — 1)% = 2aby(a, M)

1— By — =0,
Pu M2(a— 1)
ie.,
_ 2 —1) —
bata. ) = & 1)(a+Mz Bu-D-1 (3.6)
a
This is possible (in a unique manner) for ev@iy and for every: ¢ {0,1}. B
In view of (3.6) we let
ap =M*(L—Bu) +1, (3.7)
and in the following we will write the residual dual filters (3.6) in the form
wBaE) =1+ (a—2)(a—ay) (a—1Da—ay)
a 2a
— Na — — D(a —
_laz 2@z an) )S’ ) coge) 4 DN )éz M cog2e).  (3.8)

Remark 3.1 The value of8,; can be found explicitly in the following way: we write

Mil Sin(ms;m) 4
Msin(£5)

k=0

S

-1

—i Vi —i(M-1 9, 4
eiZ(M—l)($+79k)<l+e IEH00) .y i (M=D(E+ k>>
M

~
Il

0

M—
X_: AM-DE+0 3 ( . 1) Hew jE+0)

lot++ly-1=4 j=1

3 \

M-1

1 4 ((CML 1 —2(M =) (E+9%)
= — e j=1 J J k .
v 2 () D

lo++y-1= Iy k=0
To getBy, we have to keep the only nonconstant term in this last expression, which is

obtained whe@] il =2(M —1):

,3M=% > (1'4 ) (3.9)

lot+-+p_1=4 0---Im-1
oMt =201-1)
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-1 -0.5 o 0.5 1

FIG. 1. 496/5 andage/s.

These scaling functions, whenlirf (R), generate biorthogonal MRAs, and, as explained
above, general theorems guarantee the existence of associated wavelets. In the next two
sections we find explicitly two families of wavelets in the cadec {3, 4} which have
good properties in terms of support width and symmetry.

Let us observe that

M M
M-1"M-1

- M+1 M+1
I IV v

suppy = [—
In particular, for largeM the primal and dual scaling functions have similar support width.
We plot in Figs. 1-4 some of the 4-band scaling functions corresponding o
{8, a*, %, 1}, where
. —19+4/1441
a=——"-"
10
(*almost orthogonal” case).
In Figs. 5—7 we plot some examples of our 5,6,8-band scaling functions.

-1 -0.5 0 0.5 1 -1.5 -1 0.5 o 0.5 1 15

FIG. 2. 49,4+ and4¢a*.
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FIG.3. 4¢14/5 anda@1a5.
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FIG. 4. 497/2 andag7/2.
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FIG.5. 5¢3andsgs.
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FIG. 6. g¢s5/2 andgds2.

4. CONSTRUCTION OF THE WAVELET FILTERSFOR M =3

In this section we specialize the construction of the previous section to thétass
in order to explicitly construct wavelet families associated with our MRAs.
The dual scaling function filters are

) sin(%) \*/3a2— 14a+33  (a—2)(3a—11)
3Mmo.q(§) = -~ - cosé
3sin(3) 6a 3a
(@ —1)(3a —11)
- . 4.1
+ 6 cos %) (4.2)
By (2.2), the dual wavelet filters should satisfy (see [23])
: n1q.E+ 0 n2q(E+10
C¥M o (&) = 377}1, (¢ +71) srilz, (E+01) 4.2)
3ami1a(§ +02) 3m2q(§ +92)
0.8} i "/
I
° -as&N 'J

FIG. 7. gys/2 andggs,z.
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for some constant # 0 and an integek. Since we can write

Imo.a(§) = (—) (]‘[cos2< +—+ 2)>3Pa(5)

we look forzm 4, j € {1, ..., 2}, of the form

E4+m

i 4 _
3.0 (8) = 3 coé( >3P,~,u(§),

so that, when computing the determinant in (4.2), the first factors make up for the spline
term ofmg .. Now we have to find P; ,, which satisfies

3PLa(E+ 1) 3P2a(E +01)

Ce3M 3P, (8) = | — _ .
3P a6 +92) 3P24(& +12)

(4.3)

By trying 3I3j,a having at most three coefficients, in order to minimize the support length,
but at the same time allowing symmetric filters, we find

~ 1—a .
pl — _ oi& 4.4
3P ,(8) oy ¢ (4.4)
51 _ g 4~ 1 _ Bl
3P ,(§) =ae " + — = asPj ,(§). (4.5)

There also exist short filters which give a pair of symmetric—antisymmetric wavelets:

~ 1
3PLa(§)=5(a—1) +acogs), (4.6)
3P;l(5) =2sin®). (4.7)

The primal fiIterssmj.ﬂ andgmj.fa are obtained by solving the linear system (2.1) (please
check the author’'s Web page for the explicit solutions). We remark her@rﬂj@tis even,
while 3m21 is odd. Hence the primal wavelets enjoy the same symmetry properties as the
dual ones. This can be seen by solving the linear system (2.1) using Cramer’s rule, and
observing that

3mo,a(—& + 1) 3m2a( & +71)

ami! (&)= S —
3mo,q(—§ + 92) 3m21( § +92)

3o (E — 1) ambl (& —01)
—3mo,q(§ — U2) —3m2a($ 92)

3mo,q(§ + U2) 3m21a ¢ +92)
= - ————| =3 mi’ (&), (4.8)
—3mo,a(§ +91) —3m2 (& +v1)
where we have used the symmetrys6fo , and the antisymmetry ofino , as well. The
same trick shows thatn)’  is antisymmetric.
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5. CONSTRUCTION OF THE WAVELET FILTERSFOR M =4

In this section we construct explicitly two wavelet families in the cake- 4.
The dual scaling function filters we constructed in Section 3 are

ME 2 B B
wioa(® = SN 5) (“ 18 (@-2@=6
MSIn(z) 2a a

+ @-2@-6 cos 2,—‘). (5.1)

2a

By reasoning in the same way as in Section 4, we lookifef ., j € {1,...,3}, in the
form

E+m

) 4 5
wija(§) =3 cosz( >4P,~,u(§),

with 4 P; , satisfying

aPLo(E+01) aPrg(E+01) aP3q(E+ D)
Ce™M4Pa() = |aPLa€ +92) 4P2a +92) 4P3aE+92)|.  (52)
aPLo(E+03) aPrg(5+03) aP3q(E+ D)

It turns out that, among various possible choices, we can keep two of the wavelet filters
corresponding to théf = 3 case (see formulas (4.5) and (4.7)) and add a third wavelet. In
this way we obtain

4P| (&) = 12_—aa — ¢, (5.3)
4P (&) =ae™" + 1;”‘ (5.4)
aPj () =5, (5.5)
or
4Pl (&) = %(a — 1) + acog§), (5.6)
4Pyl (&) =2sinE), (5.7)
aPilE) = (5.8)

We see that the first two primal filters enjoy exactly the same properties (of length
and symmetry) as those in the ca& = 3, while the third filter is very short (only
three coefficients). Proving that (5.2) is satisfied with these choices is a matter of simple
computations.

The primal f|IterS4m and 4m”u are obtained, as usual, by solving the linear
system (2.1) (please see the authors Web page for the detailed solution). We remark
here that the filters of the family have 13 coefficients, while the filters of family/
have 17,17,13 coefficients, two symmetric (with respect to different axes) and one
antisymmetric, exactly as their duals are.
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6. CRITICAL AND SOBOLEV EXPONENTS OF M-BAND WAVELETS

The regularity of scaling functions generated by filters via the infinite product formula
(2.4) and, more in general, of solutions of refinement equations of the form

K>

g = Y arp(Mx—k) (6.1)
k=—K1

can be studied on the Fourier transform side by means of the critical and Sobolev exponents
b andsz, respectively. One introduces the trigonometric polynomial

mo(€)= Y are (6.2)
and then studies the regularity of the distribution
+00 ¢
P) = Hm0<m> (6.3)
k=0

in order to establish if it is the Fourier transform of sogmim LY(R) NL%(R), the solution
of (6.1).
We can always write

14 e oo p o iM-DE\N
) L), (6.4)

mo(§) = < i

for someN > 0, and a trigonometric polynomidl such thatC(;r) # 0. We will call £ the
residual filter. It is clear that the first factor gives a decay of ofgler" for |£| — oo in the
product (6.3) that defings. This decay competes with the growth[dj, L(&/M¥), which
one then tries to estimate.

The critical exponenk is defined by letting

b=infb;, (6.5)
J
where
j-1 1/j
b; =logy, sup[]‘[m(M’fg)ﬂ . (6.6)
§eR k=0

One can prove the sharp pointwise estimate [7, 11]
p(&)] < Ce(L4[ENVHe,
for anye > 0, and deduce from it global smoothness properties. dfower bounds fob

are easily obtained by considering cycles for the mgpon the unit circleS® ~ R/277
in C, defined byry (§) = M& (mod2r) Indeed, lety = {&,...,£,-1} be a cycle for



298 MAURO MAGGIONI

v, e & =Mé forre{l,...,p— 1) and M§,_1 = &. Then (6.5) and (6.6) imply
immediately that

p—1 1/p
b, :=logy, []_[ |£(‘§k)|] <b< sgpIE(S)I. (6.7)
k=0

These simple estimates have proven to be very effective. For example, the equality
b=b,,y= {—%”, %”}, holds for all Daubechies compactly supported wavelets [7, 8,
11, 29], and for classical Burt—-Adelson wavelets the critical exponent is always given by
maxb(o, b{—2r/3,27/3)} [18].

The Sobolev exponent is defined as

s2(¢) = sups 1@ € H'},

where as usual
H = {f NG = /R 1f @A+ 1512 dE < oo}.

This exponent gives more precise estimates for the regularity, &r example in the
Holder sense, and of course it also allows us to determine exactly whether a function is in
L2(R). It is well known thats, can be determined by studying the transition operator

mTp: C([0, 1) — C([0, 1)

M-1

Fro Y PE/M+00) f(E/M+ %),

k=0
whereP = |£]2. In fact, the spectral radiys of Tp is related tos(¢) by the formula

1
s2(p) =N — > logy, o,

whereN is as in (6.4) [11-13, 16]. A most important fact is that the spectral radid@% of

is the same as that of the restriction of the operator to certain invariant finite-dimensional
subspaces. More precisely, i is a cosine polynomial of degrek, the distinguished
subspace

L
Fr= {Z Yk COSKkE) : (vi)k € CL+1} (6.8)
k=0
is invariant under the action dfp, and [12, 13]

p(Tp|r)=p(Tp),

so that the problem is reduced to finding the greatest eigenval@ip of, . This is the
technique we will use in the following sections to determinéor all our scaling functions.
Finally, we recall the (sharp) estimate (see [7, 28])

1
N—b—igsng—b.
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6.1. Critical Exponent of Short 3-Band Filters

In this section we will always consider filters in the form

o= (G) LHc(s) (6.9)
m — s .
0 3sin(§)
with mg(0) =1, and
3
L&) =) a,cosmé) (6.10)
m=0

such thatZ(&) > 0 andL () # 0. We want to find the critical exponents of these filters.
The main result is the following

THEOREM 6.1. Supposeng and L are as above. Léi be the critical exponent ofig.
Ifap>0

b {Iog3ll(7r) if a1 + a3 <0, 6.11)

0 if ag +az>0.
If a2 < 0 and one of the following conditions is satisfied:

e 2ap<ai1+az<0,
e —2a>a;+az>0,

then

T

Remark 6.1 In the notation of (6.7), Theorem 6.1 says that, when any of the above
hypotheses are satisfied,

b=maxb ), bx), b(x/2,37/2)}-

Proof. If ap > 0, we have the following chain of inequalities:

j-1 1/j
(1‘[ £<3ks>>

k=0

1% 1% 1%
<ao+ar’ > cog3e) + az> > cog3‘2) + a3 > cog3 )

k=0 k=0 k=0
1132
<ao+ (a1+az)= ) cos3') +az + O(1/))
k=0
. ao+ a1+ az +az = L(0) if ag+az>0,
SO(l/])—i_{ao—al—i—az—cz3=£(7r) if a1 +a3 <0,

with O(1/;) uniform in &. Passing to the supremum on both sides and then lejtiteg
infinity, we see that this inequality, together with (6.7), implies the first part of the theorem.
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Whena, <0,
j—1 1/j
(1‘[ £(3"E)>
k=0
11 =
a0+ (@ taz)’ D cos3's) —ax + 2az> Y cos3'€) + 01/))
k=0 k=0
=0dQ/p
T 112
E(—) —2a3~ ) (cos3') —cos(3'%))  if —2a2>a1+a3>0,
2 J k=0
133
£<z> + 2a2= Z(cos(3"s) +cog(3%))  if2ax<ai+az=<0.
2 J k=0

The thesis follows as above, if we show that

l 3kg) — cog(3e)) = 6.12
Jim_sup= Zcos( £) — cog(36)) (6.12)
lim sup Z (cog3s) + cos(3°e)) = (6.13)

In order to prove (6.13), we solve the identity
11+ e + % + %512 = 44 6cogé) + 4 cO%2%) + 2 C0%3E)

for coq2¢) and substitute

j—1
]3 D (cos3%) +cog(3'9))
k=0

j-1
- E Z <cos(3k§) +i }cos3"25)>
j 2 272

1471 j
1
== 2005(3"5) ts+ —Z 11+ o306 4 828 | 37iE)2
k =0

1 3 — k 1 — k
-5 4—jl§)005(3 28) — 4—],;008(3 £)

j—1
1 Z|1+63 zg+63 2 3"+1i$|2+0(1/j)
J =0
with O(1/j) uniform in £. Taking the inf of the last term leaves((1/;j), which goes
to 0 asj goes to infinity, uniformly int. One can prove (6.12) in a completely analogous
manner, but starting with

114 €6 + % + %512 = 4 — 6 cog§) +4c0928) —2c0g3E). M
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Remark 6.2 Theorem 6.1 is not exhaustive: as we shall see when we shall apply this
result in the study of the critical exponent of our 3-band scaling functions, there exist
nonnegative residual filters which do not satisfy any of the hypotheses.

6.2. Regularity of Burt—Adelson 3-Band Wavelets

We apply the results of the previous section to determine the critical exponent of the new
wavelets we have constructed. We also study the Sobolev exponents.

THEOREM 6.2. The critical exponent$, and b, of the primal and dual scaling
functions generated by the filtesgio ., andanio ,, defined in(3.1)and(4.1), respectively,
are

_Jo if $<a<1,
logz(2a — 1) ifa>1,
. Iogw fo<a<jora=1i,
ba= 3 i
Iog33a if 5<a<3.

The Sobolev exponents anda, of the primal and dual scaling functions are

1 9 3
sa=2——log3<—a2—3a+—>

2
. _1[69, 179, 4363, 4015 3993
Sa= 2132 T 78 28" T 24T 32

1
+ 9—6(77084865— 2214677524 2924274764 — 224639124

+10161414382— 325068728 + 62435888 — 6870964 + 331294)1/2|.
For

1+4y10
e 75dm.— (o 8673947716, Y =0 ; )
the scaling functionse,, 3@, generated bygmg , andsrig, are inL2(R) and give rise
to biorthogonal MRAs. For these values @f any biorthogonal wavelet filters which
are trigonometric polynomials generate unconditional biorthogonal 3-band wavelets bases
for L2(R).

Proof. Let us recall the expressions of the residudls,, andsPo .

3P0a(§) =a+ (1—a)cost
- 3a2—14a+33 (a—2)(3a—11
3Poa(€) = @7 2Cam 1D
6a 3a
—1)(3Ba—-11
+ —(a ) )cosz.

3a

SincezPo, is even and monotone d®@, ], its maximum is attained at O or at. On
the other handjr} is a cycle forzy,, for any oddM, so estimate (6.7) (witl = 3Po )
givesb, as desired. Observe that the same argument actually holds for anyf qddd
asymptotically for everds, by considering the cyclg =

= liri — 7))
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-0 s+

FIG. 8. Regularity of 3-band Burt—Adelson primal scaling functions, together with the estinvateg, —
1/2<s9 <N —bg.

To study the positiveness of the dual residuals, we calculate

d -~ 3a—11

d_sspo’” =— sing (2(a — 1) cost +2—a).

We have flat points at 0z, and, fora € (—o0,0) U (%, o), another local extrema at

Eazarcco< a-2 )
2(a—1)

A simple computation yields

302 —23a+12

3Poa(,) = 12(1-a)

)

which is nonnegative for
4 23+ /385
“€ {5’ T}'
Since
6a® — 31la+ 44
- T >0

3Poa(m) = o > iff a € (0, 00),
we deduce thagPo . (¢) > O for all £ if and only if
aefp = (0, 23%385]

We apply Theorem 6.1 to determine the critical exponents for the dual residuals.
Following the notation of Theorem 6.1, we let

B (a—2)(3a —11) ax(@) = (a—1)(3a —11)

a1(a) = 3a 6a
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FIG.9. Regularity of 3-band Burt—Adelson dual scaling functioNs: b, — 1/2 < s» < N — b. The critical
exponent, has been plotted of#/3, 3/2) according to Conjecture 1.

Simple computations yield

ai(a) >0 ifft  ae(—o0,00U[2 ],
az(a) >0 iff  ae(0,1U[%, 00),
2az(a) < ai(a) <0 iff  ael3,2]u{},
—2az(a) >a1@)=0  iff ae[2%].

These relations and the restrictior Zp allow an application of Theorem 6.1 for
ae(0,1]U [%,oo)
Fora € [1, §]itis easily shown that

s?pﬁo,a(g) = Pyq(m),

and henceé, = logs Po 4 () for these values of.
The continuity of the critical exponent and the guess that, at least for these filters of low
degree, the relatioh = b,, holds for some short cycle leads to the following

CONJECTURE 1. We have
bg=logz Poo(m)  forae[3.3].
The Sobolev exponent can be found by studying the spectral radii of the transition
operatorsz7|p, 2 and 3l\5,2 associated respectively to the primal and dual MRAs. As

explained before, we can consider the restrictigifig 2 | 7, and?’Tlf’an |7, - Since

|P,1%(&) = a® + 2a(1 — a) cost + (1 — a)?>coS &,
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35

FIG. 10. 3¢13/10 @and3@13/10-

a matrix representation of7p, 2 |£,, With respect to the basdd, cog-), cog(-)} and
{1,cog-),cosq-)}, is the following,

9a?—3a+3 0 0
Zd +ZCl—% 0
0

From this one easily deduces that the spectral radig#|ef2 | =,, and hence of7} 2,

is
10(3T|pa‘2) = 2(12 —3a + g

The calculations for the matrix representiﬂgpa‘z |7, are longer, but it is perhaps worth
noticing that the determination of the eigenvalues leads to an equation of order three (and
not five as one would expect): we will see later that alsaWor 3 the kernel o875 2 | £,
is nontrivial. The characteristic equation can thus be solved algebraically, which leads to
the Sobolev exponent of the dual scaling functions.

Finally, to get the interval of admissibiliﬁlgdm it is sufficient, by Cohen, Daubechies
and Faveau’s theorem [9, 10, 19, 23] to solve the system- 0, 52 > 0}. The first
inequality is satisfied for

1-4y10 144410
€ ’
3 3
and the second one for

a € (0.86739477168.831599978).

The last assertion of the theorem then follows by taking the intersection of these two
intervals of admissibility.l

We plot in Figs. 10— 16 the scaling functions correspondirtgeto{%g, “/3_3 154} and the

wavelets only for = 5 , since the value of does not affect the qualitative structure of

the wavelets. The value= Q minimizes thelL2(T) distance betweemg andsig, and

the corresponding biorthogonal bases are expected to be nearly orthogonal. This could be a
good choice of wavelets for digital image processing, as is noted ithe? case, in [1].



M-BAND BURT-ADELSON BIORTHOGONAL WAVELETS 305

0.8

0.6

04

0.2

o

-0.2

-1.5 -1 0.5 o 05 1 15 -2 -15 -1 “£5 Q 0.5 1 1.5 2

FIG. 11. 3(/)\@/3 andgéﬁ/s.

4
s
3
0.8
2+
0.6
1
0.4}
0
0.2
-1
0
-t5 -1 -0.8 [ as 1 15 -2 -15 -1 -5 Q 0.8 1 15 2

FIG. 12. 3¢p14/5 andz@i4/5.

0.5{ i
l \_\’_’4
o

~0.5F

-1

s . -2c
-2 -2 -1.5 -1 -0.5 o 0.5 1 1.5 -1 -5 M 0.5 1

FIG. 13. 31//{.14/5 and31/7{.14/5.



306 MAURO MAGGIONI

-25 -2 -5 -1 -05 L] 0.5 1 1.5 2 28 -1 05 0 0.5 '

FIG. 15. 31//{.’14/5 and31/7{.’14/5.

2F / k!
/

15p / 4

1 J 1
0.5

0

-0.§
-t \
\\
-1 05 )

0.5 1

=25 -2 ~1.5 -1 -0.5 ] 0s 1 1.5 2 25

FIG. 16. 31//21.114/5 and31/7£114/5.



M-BAND BURT-ADELSON BIORTHOGONAL WAVELETS 307

6.3. Sobolev Exponent #f-Band Burt—Adelson Scaling Functiod, > 3

The key observation here is that since our residual filters are rather short, and their length
does not depend oM, the downsampling (by/) operation involved in the definition of
mTp makes it possible to find explicit algebraic expressions for the spectral radii of the
associated transition operators.

6.3.1. Regularity of the primal filters.We have
|P,1%(&) = a® + 2a(1 — a) cost + (1 — a)’cosE,

so we can consider the restrictigi?| 5 2 | 7,. For M > 4, a matrix representation of this
restricted operator (with respect to the bagesog-), cog(-)} and{1, cog-), cos2-)}) is
the following,

%Maz—aM—i-% 0 0

0 0]. (6.14)
0
Here we have used the simple equalities

M-1
Z coS(E + %) = —

=0

-1

CoSE+ ) =0 if M>3

k=0

-1
Z cod (€ + ) = =
k=0

which can be derived by writing

M 11
Z cod(E +v0) = Z 3 ( ) I == )
k=0 j=0
1 l M-1
— i(2j-Dé& i(2j—1)0
13 (1) Y erim
j=0

k=0
We immediately deduce that

3 M
puTip,plr,) = 5Ma® = Ma+ —., (6.15)

for M > 3. From the relation

1
Sp=2-— > logy, /0(MT|P,,|2|}'2),

we deduce that the admissibility inequality> 0 is satisfied if and only if

1 2 21 [2 2
S g Vi B g V& ) 1
€<3 3 9'37V3 9) (6.16)
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6.3.2. Regularity of the dual filters.The study of the spectral radius of the transition
operators associated with the dual filters is more involved Mar 6 we will find a neat
expression for it, but wheM € {4, 5}, there seems to be no way to avoid some calculations.
We stress the fact that all of them can be carried out algebraically and present briefly their
results.

Recall that sincéy, P, |2 is a cosine polynomial of degree 4, we can study the restrictions

T, 5,12 Fa- The matrix representingT, LB, 2|7, On the baseg1, coq-), co(-)} and
{1 cog-), cog2.)} is almost lower trlangular and the spectral radius is

1 435 , 5, 3
T p,pl7) = — —2734 + 5 4% +279+ Za*—19a
1
+7 (7792334 — 22286644 + 1826064+ 57a° — 1752d

+231828 — 1717607 — 4040928%3965112&)1/2]

so that the interval of admissibility for bothy, andg, is

1+ /385
729m. — (09165579310 +3 )

WhenM =5, similar computations lead to

5 2835— 2844a+ 1054F — 1484 + Ta*
8 a? ’

pGT ) f 2l 7,) =
from which we can deduce the interval of admissibility

J3074
720m_ <09694411335w5)

Finally, for M > 6, we claim not only that the matrix representing (on the same bases
used above),,T|M}3a|2|f4 is lower triangular, but also that the only nonzero entry on the
diagonal is the elemerit, 1). This means we have to prove that

uT,, 5,2l 74(COS() (6.17)

is a (cosine) polynomial of degree strictly less thiafor each/ € (1, ..., 4}. To show this,

it is enough to observe thai; P,|2 has degree 4; hence (6.17) is a cosine polynomial of
degree less than or equal EQ‘%J < [. Hence the only nonzero eigenvalue is equal to the
entry (1, 1) in the matrix, which is¢y is as in (3.7))

3502, + 7a* + 1942 — 14a%ay — 46aay + Ta’a?,
2

a
N —30ad8, — 22a% + 52aMa2>

P(MY]M}sa|2|}‘4) = g(

a?

In particular, one can find the interval of admissibility for evéfyby determiningx,, and
solving an equation of order 4.

We plot in Figs. 17 and 18 the graphs representing the Sobolev regularity of the primal
and dual scaling functions faw € {4, 5, 6, 8}.
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FIG. 17. Sobolev exponent of primal (monotone decreasing) and dual scaling functioas}, 5.

7. COMMENTS AND APPLICATIONS

Our construction takes advantage of both the flexibility of the biorthogonal setting and
the M-band structure in order to design simpie-band filters and different families of
wavelets which enjoy both good localization and good symmetry properties.

Some rather recent works are related to ours. Chui and Lian present in [6] some families
of 3-band symmetric—antisymmetric orthonormal wavelets with good (and possibly
arbitrarily high) regularity. Biet al. and Sun presented in [3], a¥-band orthonormal,
compactly supported, cardinal scaling function, #6r> 3 (no such scaling functions exist
for M = 2). In [2], Belogay and Wang study families of symmetric orthonormal scaling
functions for any dilationM: some filters are given in explicit form and the regularity
of the associated wavelets is determined. Here, in the biorthogonal setting, we were able
to carry out a completely explicit construction for an, with very simple filters. Our
scaling functions have poor flexibility as far as smoothness is regarded, but one can take
advantage of the freedom in choosing a parameter corresponding to wavelets better suited
to a particular application.

We have in mind various applications in which these new families of wavelets, in
particular 3,4-band, are expected to be especially effective. The regularity, vanishing
moments, and support lengths of our wavelets seem to be particularly suited for digital
sound and image processing, but the combination of all these rather common properties
with the symmetry—antisymmetry of our wavelets should prove very important. In

FIG. 18. Sobolev exponent of primal (monotone decreasing) and dual scaling functioass, 8.
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fact, these properties imply that an analysis performed by our wavelets will efficiently
split symmetric features of a signal from antisymmetric ones. For example, since the
human visual perception system seems to be less sensitive to symmetric errors than
to antisymmetric ones, improved (lossy) compression could be possibly achieved by
discarding symmetric and antisymmetric coefficients in a selective manner. Moreover, one
expects that near an edge, the coefficients of the antisymmetric wavelets and those of the
symmetric ones will behave quite differently, which could be used to effectively find edges
in images.
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