7,719 research outputs found

    Sliding mode control of an unmanned air-vehicle system

    Get PDF
    The objective of this study is to design a Controller that is stable under varying conditions of system parameters from the trim conditions and also robust for parametric variation for an Unmanned Air Vehicle (UAV) System. The PID and Sliding Mode Controller are the control models for the UAV system that are studied, designed and analyzed. The proposed Sliding Mode Controller was applied to a nonlinear second order system (Single Input Single Output (SISO)) and tested for stability and robustness of the system for parametric variation. The control model indicated chattering effect with switching (signum) function. Therefore, in order to negate this chattering effect Saturation and ATAN functions were proposed for the control input. It was observed that the modified system demonstrated robustness in presence of parameter uncertainties such as inertial mass, stiffness, damping, input gain and nonlinear gain. The same model is tested with a PID Controller and observed that the controller is stable but the tracking error is 10 times more than the sliding mode controller, this is due to inability of the linear PID controller to control nonlinear systems. The sliding mode controller was then extended to control a Single Input Two Output system for parametric variation. It was observed that the controller was able to stabilize the system and make the system robust. Then, Sliding Mode Controller based on Switching theory and Lyapunov\u27s theory was designed for Unmanned Air Vehicle System under uncertainty conditions. Stable sliding mode and robust asymptotic stability in uncertain UAV systems were investigated for variation in Velocity and Angle of Attack parameters. Finally, simulation results are presented to show the effectiveness of the design method

    Self-Evolving Data Cloud-Based PID-Like Controller for Nonlinear Uncertain Systems

    Get PDF
    In this article, a novel self-evolving data cloud-based proportional integral derivative (PID) (SEDCPID) like controller is proposed for uncertain nonlinear systems. The proposed SEDCPID controller is constructed by using fuzzy rules with nonparametric data cloud-based antecedence and PID-like consequence. The antecedent data clouds adopt the relative data density to represent the fuzzy firing strength of input variables instead of the explicit design of the membership functions in the classical sense. The proposed SEDCPID controller has the advantages of evolving structure and adapting parameter concurrently in an online manner. The density and distance information of data clouds are proposed to achieve the addition and deletion of data clouds and also a stable recursive method is proposed to update the parameters of the PID-like subcontrollers for the fast convergence performance. Based on the Lyapunov stability theory, the stability of the proposed controller is proven and the proof shows the tracking errors converge to a small neighborhood. Numerical and experimental results illustrate the effectiveness of the proposed controller in handling the uncertain nonlinear dynamic systems

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Robust control of room temperature and relative humidity using advanced nonlinear inverse dynamics and evolutionary optimisation

    Get PDF
    A robust controller is developed, using advanced nonlinear inverse dynamics (NID) controller design and genetic algorithm optimisation, for room temperature control. The performance is evaluated through application to a single zone dynamic building model. The proposed controller produces superior performance when compared to the NID controller optimised with a simple optimisation algorithm, and classical PID control commonly used in the buildings industry. An improved level of thermal comfort is achieved, due to fast and accurate tracking of the setpoints, and energy consumption is shown to be reduced, which in turn means carbon emissions are reduced
    • 

    corecore