4,096 research outputs found

    Magnetic Flux Leakage Method: Large-Scale Approximation

    Full text link
    We consider the application of the magnetic flux leakage (MFL) method to the detection of defects in ferromagnetic (steel) tubulars. The problem setup corresponds to the cases where the distance from the casing and the point where the magnetic field is measured is small compared to the curvature radius of the undamaged casing and the scale of inhomogeneity of the magnetic field in the defect-free case. Mathematically this corresponds to the planar ferromagnetic layer in a uniform magnetic field oriented along this layer. Defects in the layer surface result in a strong deformation of the magnetic field, which provides opportunities for the reconstruction of the surface profile from measurements of the magnetic field. We deal with large-scale defects whose depth is small compared to their longitudinal sizes---these being typical of corrosive damage. Within the framework of large-scale approximation, analytical relations between the casing thickness profile and the measured magnetic field can be derived.Comment: 12 pages, 3 figure

    Weak magnetic flux leakage : a possible method for studying pipeline defects located either inside or outside the structures

    Get PDF
    Magnetic leakage distribution results from linear defects of oil–gas pipelines in a weak magnetic field, which is modeled by the magnetic dipole theory. The analysis is useful for the identification of defects located either inside or outside the pipelines. The results indicate that the radial signals of inside–outside defects can be clearly distinguished, and the axial signals are basically the same in a weak magnetic field. The theoretical and the experimental results are very consistent

    Magnetic Flux Leakage techniques for detecting corrosion of pipes

    Get PDF
    Oil and gas pipelines are subjected to corrosion due to harsh environmental conditions as in refinery and thermal power plants. Interesting problems such as internal and external corrosion, emerging from the increasing demand for pipeline protection have prompted this study. Thus, early detection of faults in pipes is essential to avoid disastrous outcomes. The research work presented in this thesis comprises investigations into the use of magnetic flux leakage (MFL) testing for pipe in extreme (underwater and high temperature) conditions. The design of a coil sensor (ferrite core with coil) with a magnetic circuit is carried out for high temperature conditions. The sensor thus developed lays the ground for non-destructive evaluation (NDE) of flaws in pipes through the MFL technique. The research focusses on the detection and characterization of MFL distribution caused by the loss of metal in ferromagnetic steel pipes. Experimental verifications are initially conducted with deeply rusted pipe samples of varying thicknesses in air. AlNiCo magnets are used along with Giant Magneto Resistance (GMR) sensor (AA002-02). The experiment is further repeated for saltwater conditions in relation to varying electrical conductivity with radio frequency identification (RFID) technique. A further study carried out in the research is the correlation between magnetic and underwater data communication. The study has resulted in the development and experimental evaluation of a coil sensor with its magnetic response at room and high temperatures. This makes the system effective under high temperature conditions where corrosion metal loss needs to be determined

    Magnetic Flux Leakage techniques for detecting corrosion of pipes

    Get PDF
    Oil and gas pipelines are subjected to corrosion due to harsh environmental conditions as in refinery and thermal power plants. Interesting problems such as internal and external corrosion, emerging from the increasing demand for pipeline protection have prompted this study. Thus, early detection of faults in pipes is essential to avoid disastrous outcomes. The research work presented in this thesis comprises investigations into the use of magnetic flux leakage (MFL) testing for pipe in extreme (underwater and high temperature) conditions. The design of a coil sensor (ferrite core with coil) with a magnetic circuit is carried out for high temperature conditions. The sensor thus developed lays the ground for non-destructive evaluation (NDE) of flaws in pipes through the MFL technique. The research focusses on the detection and characterization of MFL distribution caused by the loss of metal in ferromagnetic steel pipes. Experimental verifications are initially conducted with deeply rusted pipe samples of varying thicknesses in air. AlNiCo magnets are used along with Giant Magneto Resistance (GMR) sensor (AA002-02). The experiment is further repeated for saltwater conditions in relation to varying electrical conductivity with radio frequency identification (RFID) technique. A further study carried out in the research is the correlation between magnetic and underwater data communication. The study has resulted in the development and experimental evaluation of a coil sensor with its magnetic response at room and high temperatures. This makes the system effective under high temperature conditions where corrosion metal loss needs to be determined

    Axial magnetic field sensing for pulsed magnetic flux leakage hairline crack detection and quantification

    Get PDF
    The Magnetic Flux Leakage (MFL) testing method is a well-established branch of electromagnetic non-destructive testing technology extensively used to observe, analyze and estimate the level of imperfections (cracks, corrosions, pits, dents, etc.) affecting the quality of ferromagnetic steel structures. However the conventional MFL (DCMFL) method are not capable of estimating the defect sizes and orientation, hence an additional transducer is required to provide the extra information needed. This paper takes the detection and quantification of tangentially oriented rectangular surface and far-surface hairline cracks as the research objective. It uses an optimized pulsed magnetic flux leakage probe system to establish the location and geometries of such cracks. The results gathered from the approach show that data using the axial (Bx) field component can provide detailed locational information about hairline cracks especially the shape, size and orientation when positioned perpendicular to the applied field

    Estimation of permeability for magnetic flux leakage modelling

    Get PDF

    Application of state-of-the-art FEM techniques to magnetostatic NDE

    Get PDF
    A typical example of the complexities involved in the numerical modeling of electromagnetic phenomena is that of modeling the magnetic flux leakage inspection of gas transmission pipelines. The problem calls for three-dimensional modeling of motionally induced currents (using transient analysis), modeling nonlinearity of the ferromagnetic parts, and accurate modeling of the permanent magnet used in the magnetizer. Researchers, have thus far simplified the problem using several assumptions, including that of axisymmetry, and modeling velocity effects using steady-state analysis. However, there has been no attempt to quantify the errors introduced by these assumptions. Also, due to the unavailability of commercial codes to solve three-dimensional motion-related problems using transient analysis, a detailed study of the true nature of velocity effects has not been possible;This dissertation implements and evaluates state-of-the-art finite element modeling techniques applied to the specific problem of modeling magnetic flux leakage inspection of gas pipelines. This provides the basis from which conclusions can be drawn on the general problem of modeling magnetostatic phenomena. Axisymmetric and three-dimensional models are developed capable of modeling velocity effects. A detailed analysis of the differences between axisymmetric and three-dimensional geometries, based on a study of permeability variations in the vicinity of defects is presented. Also, the need for transient analysis is argued based on results generated. As part of this study, serious problems (including spurious solutions and corner singularities) associated with the traditional node-based finite-element techniques, when applied to the three-dimensional modeling, are discussed. In this work, new and efficient numerical modeling concepts, using the edge-based finite-element technique are employed to overcome these problems;This study demonstrates the need for accurate modeling of the full three-dimensional geometry, incorporating velocity effects and nonlinear permeability, for realistic predictions of flux leakage inspection tools. Major contributions of this work include: (1) detailed analysis of the physical processes associated with the magnetic flux leakage tool, (2) design ideas to improve the performance of the tool, and (3) development of an edge-based finite element code for modeling magnetostatic nondestructive testing applications in three-dimensions incorporating velocity effects. This is the first study of this nature, applied to pipeline inspection, and, many of the conclusions presented can be applied to nondestructive testing techniques in general

    Water and Wastewater Pipe Nondestructive Evaluation and Health Monitoring: A Review

    Get PDF
    Civil infrastructures such as bridges, buildings, and pipelines ensure society's economic and industrial prosperity. Specifically, pipe networks assure the transportation of primary commodities such as water, oil, and natural gas. The quantitative and early detection of defects in pipes is critical in order to avoid severe consequences. As a result of high-profile accidents and economic downturn, research and development in the area of pipeline inspection has focused mainly on gas and oil pipelines. Due to the low cost of water, the development of nondestructive inspection (NDI) and structural health monitoring (SHM) technologies for fresh water mains and sewers has received the least attention. Moreover, the technical challenges associated with the practical deployment of monitoring system demand synergistic interaction across several disciplines, which may limit the transition from laboratory to real structures. This paper presents an overview of the most used NDI/SHM technologies for freshwater pipes and sewers. The challenges that said infrastructures pose with respect to oil and natural gas pipeline networks will be discussed. Finally, the methodologies that can be translated into SHM approaches are highlighted
    • …
    corecore