108,145 research outputs found

    Trustnet: a Trust and Reputation Management System in Distributed Environments

    Get PDF
    With emerging Internet-scale open content and resource sharing, social networks, and complex cyber-physical systems, trust issues become prominent. Despite their rigorous foundations, conventional network security theories and mechanisms are inadequate at addressing such loosely-defined security issues in decentralized open environments.In this dissertation, we propose a trust and reputation management system architecture and protocols (TrustNet), aimed to define and promote trust as a first-class system parameter on par with communication, computation, and storage performance metrics. To achieve such a breakthrough, we need a fundamentally new design paradigm to seamlessly integrate trust into system design. Our TrustNet initiative represents a bold effort to approach this ultimate goal. TrustNet is built on the top of underlying P2P and mobile ad hoc network layer and provides trust services to higher level applications and middleware. Following the TrustNet architecture, we design, implement, and analyze trust rating, trust aggregation, and trust management strategies. Especially, we propose three trust dissemination protocols and algorithms to meet the urgent needs and explicitly define and formulate end-to-end trust. We formulate trust management problems and propose the H-Trust, VectorTrust, and cTrust scheme to handle trust establishment and aggregation issues. We model trust relations as a trust graph in distributed environment to enhance accuracy and efficiency of trust establishment among peers. Leveraging the distributed Bellman-Ford algorithm, stochastic Markov chain process and H-Index algorithm for fast and lightweight aggregation of trust scores, our scheme are decentralized and self-configurable trust aggregation schemes.To evaluate TrustNet management strategies, we simulated our proposed protocols in both unstructured P2P network and mobile ad hoc network to analyze and simulate trust relationships. We use software generated data as well as real world data sets. Particularly, the student contact patterns on the NUS campus is used as our trust communication model. The simulation results demonstrate the features of trust relationship dissemination in real environments and the efficiency, accuracy, scalability and robustness of the TrustNet system.Computer Science Departmen

    Private Multi-party Matrix Multiplication and Trust Computations

    Full text link
    This paper deals with distributed matrix multiplication. Each player owns only one row of both matrices and wishes to learn about one distinct row of the product matrix, without revealing its input to the other players. We first improve on a weighted average protocol, in order to securely compute a dot-product with a quadratic volume of communications and linear number of rounds. We also propose a protocol with five communication rounds, using a Paillier-like underlying homomorphic public key cryptosystem, which is secure in the semi-honest model or secure with high probability in the malicious adversary model. Using ProVerif, a cryptographic protocol verification tool, we are able to check the security of the protocol and provide a countermeasure for each attack found by the tool. We also give a randomization method to avoid collusion attacks. As an application, we show that this protocol enables a distributed and secure evaluation of trust relationships in a network, for a large class of trust evaluation schemes.Comment: Pierangela Samarati. SECRYPT 2016 : 13th International Conference on Security and Cryptography, Lisbonne, Portugal, 26--28 Juillet 2016. 201

    Certified randomness in quantum physics

    Get PDF
    The concept of randomness plays an important role in many disciplines. On one hand, the question of whether random processes exist is fundamental for our understanding of nature. On the other hand, randomness is a resource for cryptography, algorithms and simulations. Standard methods for generating randomness rely on assumptions on the devices that are difficult to meet in practice. However, quantum technologies allow for new methods for generating certified randomness. These methods are known as device-independent because do not rely on any modeling of the devices. Here we review the efforts and challenges to design device-independent randomness generators.Comment: 18 pages, 3 figure

    Energy efficient mining on a quantum-enabled blockchain using light

    Full text link
    We outline a quantum-enabled blockchain architecture based on a consortium of quantum servers. The network is hybridised, utilising digital systems for sharing and processing classical information combined with a fibre--optic infrastructure and quantum devices for transmitting and processing quantum information. We deliver an energy efficient interactive mining protocol enacted between clients and servers which uses quantum information encoded in light and removes the need for trust in network infrastructure. Instead, clients on the network need only trust the transparent network code, and that their devices adhere to the rules of quantum physics. To demonstrate the energy efficiency of the mining protocol, we elaborate upon the results of two previous experiments (one performed over 1km of optical fibre) as applied to this work. Finally, we address some key vulnerabilities, explore open questions, and observe forward--compatibility with the quantum internet and quantum computing technologies.Comment: 25 pages, 5 figure

    Semantic and logical foundations of global computing: Papers from the EU-FET global computing initiative (2001–2005)

    Get PDF
    Overvew of the contents of the volume "Semantic and logical foundations of global computing

    It’s a Relationship: A Qualitative Exploration of the Challenges to Interorganizational Collaborative Relationships

    Get PDF
    Interorganizational collaboration is increasingly used to address social issues, but it can fail when the underlying relationships become damaged. This study explores the qualities, characteristics, and processes that can fracture collaborative relationships and the consequences of failing to correct these fractures. Using a qualitative design, interview data were collected from 19 executive directors of Canadian human service organizations. The findings highlight several challenges to collaboration and show the importance of exploring negative outcomes of inaction. An additional aim of this study is to provide strategies for building and nurturing collaborative relationships
    corecore