88 research outputs found

    Optimization Guarantees for ISTA and ADMM Based Unfolded Networks

    Get PDF
    Recently, unfolding techniques have been widely utilized to solve the inverse problems in various applications. In this paper, we study optimization guarantees for two popular unfolded networks, i.e., unfolded networks derived from iterative soft thresholding algorithms (ISTA) and derived from Alternating Direction Method of Multipliers (ADMM). Our guarantees–leveraging the Polyak-Lojasiewicz* (PL*) condition–state that the training (empirical) loss decreases to zero with the increase in the number of gradient descent epochs provided that the number of training samples is less than some threshold that depends on various quantities underlying the desired information processing task. Our guarantees also show that this threshold is larger for unfolded ISTA in comparison to unfolded ADMM, suggesting that there are certain regimes of number of training samples where the training error of unfolded ADMM does not converge to zero whereas the training error of unfolded ISTA does. A number of numerical results are provided backing up our theoretical findings

    ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic SAR Imaging with Adaptive Threshold

    Full text link
    Tomographic SAR technique has attracted remarkable interest for its ability of three-dimensional resolving along the elevation direction via a stack of SAR images collected from different cross-track angles. The emerged compressed sensing (CS)-based algorithms have been introduced into TomoSAR considering its super-resolution ability with limited samples. However, the conventional CS-based methods suffer from several drawbacks, including weak noise resistance, high computational complexity, and complex parameter fine-tuning. Aiming at efficient TomoSAR imaging, this paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA) architecture with adaptive threshold, named Adaptive Threshold ALISTA-based Sparse Imaging Network (ATASI-Net). The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem, leaving only two scalar parameters to be learned from data, which significantly simplifies the training stage. In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise. Moreover, the final learned thresholds can be visualized and combined with the SAR image semantics for mutual feedback. Finally, extensive experiments on simulated and real data are carried out to demonstrate the effectiveness and efficiency of the proposed method

    Theoretical Perspectives on Deep Learning Methods in Inverse Problems

    Get PDF
    In recent years, there have been significant advances in the use of deep learning methods in inverse problems such as denoising, compressive sensing, inpainting, and super-resolution. While this line of works has predominantly been driven by practical algorithms and experiments, it has also given rise to a variety of intriguing theoretical problems. In this paper, we survey some of the prominent theoretical developments in this line of works, focusing in particular on generative priors, untrained neural network priors, and unfolding algorithms. In addition to summarizing existing results in these topics, we highlight several ongoing challenges and open problems
    • …
    corecore