35,452 research outputs found

    Theoretical foundations of artificial immune systems

    Get PDF
    Artificial immune systems (AIS) are a special class of biologically inspired algorithms, which are based on the immune system of vertebrates. The field constitutes a relatively new and emerging area of research in Computational Intelligence that has achieved various promising results in different areas of application, e.g., learning, classification, anomaly detection, and (function) optimization. An increasing and often stated problem of the field is the lack of a theoretical basis for AIS as most work so far only concentrated on the direct application of immune principles. In this thesis, we concentrate on optimization applications of AIS. It can easily be recognized that with respect to this application area, the work done previously mainly covers convergence analysis. To the best of our knowledge this thesis constitutes the first rigorous runtime analyses of immune-inspired operators and thus adds substantially to the demanded theoretical foundation of AIS. We consider two very common aspects of AIS. On one hand, we provide a theoretical analysis for different hypermutation operators frequently employed in AIS. On the other hand, we examine a popular diversity mechanism named aging. We compare our findings with corresponding results from the analysis of other nature-inspired randomized search heuristics, in particular evolutionary algorithms. Moreover, we focus on the practical implications of our theoretical results in order to bridge the gap between theory and practice. Therefore, we derive guidelines for parameter settings and point out typical situations where certain concepts seem promising. These analyses contribute to the understanding of how AIS actually work and in which applications they excel other randomized search heuristics

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    Computer Science and Game Theory: A Brief Survey

    Full text link
    There has been a remarkable increase in work at the interface of computer science and game theory in the past decade. In this article I survey some of the main themes of work in the area, with a focus on the work in computer science. Given the length constraints, I make no attempt at being comprehensive, especially since other surveys are also available, and a comprehensive survey book will appear shortly.Comment: To appear; Palgrave Dictionary of Economic

    Anyone but Him: The Complexity of Precluding an Alternative

    Get PDF
    Preference aggregation in a multiagent setting is a central issue in both human and computer contexts. In this paper, we study in terms of complexity the vulnerability of preference aggregation to destructive control. That is, we study the ability of an election's chair to, through such mechanisms as voter/candidate addition/suppression/partition, ensure that a particular candidate (equivalently, alternative) does not win. And we study the extent to which election systems can make it impossible, or computationally costly (NP-complete), for the chair to execute such control. Among the systems we study--plurality, Condorcet, and approval voting--we find cases where systems immune or computationally resistant to a chair choosing the winner nonetheless are vulnerable to the chair blocking a victory. Beyond that, we see that among our studied systems no one system offers the best protection against destructive control. Rather, the choice of a preference aggregation system will depend closely on which types of control one wishes to be protected against. We also find concrete cases where the complexity of or susceptibility to control varies dramatically based on the choice among natural tie-handling rules.Comment: Preliminary version appeared in AAAI '05. Also appears as URCS-TR-2005-87
    • …
    corecore