48,558 research outputs found

    Synthetic Semiotics: on modelling and simulating the \ud emergence of sign processes

    Get PDF
    Based on formal-theoretical principles about the \ud sign processes involved, we have built synthetic experiments \ud to investigate the emergence of communication based on \ud symbols and indexes in a distributed system of sign users, \ud following theoretical constraints from C.S.Peirce theory of \ud signs, following a Synthetic Semiotics approach. In this paper, we summarize these computational experiments and results regarding associative learning processes of symbolic sign modality and cognitive conditions in an evolutionary process for the emergence of either symbol-based or index-based communication

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways

    A Comparison of Different Cognitive Paradigms Using Simple Animats in a Virtual Laboratory, with Implications to the Notion of Cognition

    Get PDF
    In this thesis I present a virtual laboratory which implements five different models for controlling animats: a rule-based system, a behaviour-based system, a concept-based system, a neural network, and a Braitenberg architecture. Through different experiments, I compare the performance of the models and conclude that there is no best model, since different models are better for different things in different contexts. The models I chose, although quite simple, represent different approaches for studying cognition. Using the results as an empirical philosophical aid, I note that there is no best approach for studying cognition, since different approaches have all advantages and disadvantages, because they study different aspects of cognition from different contexts. This has implications for current debates on proper approaches for cognition: all approaches are a bit proper, but none will be proper enough. I draw remarks on the notion of cognition abstracting from all the approaches used to study it, and propose a simple classification for different types of cognition

    Why it is important to build robots capable of doing science

    Get PDF
    Science, like any other cognitive activity, is grounded in the sensorimotor interaction of our bodies with the environment. Human embodiment thus constrains the class of scientific concepts and theories which are accessible to us. The paper explores the possibility of doing science with artificial cognitive agents, in the framework of an interactivist-constructivist cognitive model of science. Intelligent robots, by virtue of having different sensorimotor capabilities, may overcome the fundamental limitations of human science and provide important technological innovations. Mathematics and nanophysics are prime candidates for being studied by artificial scientists

    New Media Art/ New Funding Models

    Get PDF
    Investigates the current state of funding for new media artists, with an emphasis on the support structures for innovative creative work that utilizes advanced technologies as the main vehicle for artistic practice

    SIMDAT

    No full text

    Virtual learning environment for interactive engagement with advanced quantum mechanics

    Full text link
    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats can not. We present our virtual learning environment \emph{StudentResearcher} which incorporates simulations, multiple-choice quizzes, video lectures and gamification into a learning path for quantum mechanics at the advanced university level. \emph{StudentResearcher} is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.Comment: 8 pages, 6 figure
    • …
    corecore