211,470 research outputs found

    A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    Full text link
    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1M1M_{\odot} stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude fmf_m of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of fmf_m. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes to rise radially from the bottom of the convection zone. On taking account of the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.Comment: Accepted for publication in Ap

    Investigation of fiber/matrix adhesion: test speed and specimen shape effects in the cylinder test

    Get PDF
    The cylinder test, developed from the microdroplet test, was adapted to assess the interfacial adhesion strength between fiber and matrix. The sensitivity of cylinder test to pull-out speed and specimen geometry was measured. It was established that the effect of test speed can be described as a superposition of two opposite, simultaneous effects which have been modeled mathematically by fitting two parameter Weibull curves on the measured datas. Effects of the cylinder size and its geometrical relation on the measured strength values have been analyzed by finite element method. It was concluded that the geometry has a direct influence on the stress formation. Based on the results achieved, recommendations were given on how to perform the novel single fiber cylinder test

    On engineering reliability concepts and biological aging

    Get PDF
    Some stochastic approaches to biological aging modeling are studied. We assume that an organism acquires a random resource at birth. Death occurs when the accumulated dam-age (wear) exceeds this initial value, modeled by the discrete or continuous random vari-ables. Another source of death of an organism is also taken into account, when it occurs as a consequence of a shock or of a demand for energy, which is a generalization of the Strehler-Mildwan’s model (1960). Biological age based on the observed degradation is also defined. Finally, aging properties of repairable systems are discussed. We show that even in the case of imperfect repair, which is certainly the case for organisms, aging slows down with age and eventually can even fade out. This presents another possible explanation for the human mortality rate plateaus.mortality

    Understanding the shape of the mixture failure rate (with engineering and demographic applications)

    Get PDF
    Mixtures of distributions are usually effectively used for modeling heterogeneity. It is well known that mixtures of DFR distributions are always DFR. On the other hand, mixtures of IFR distributions can decrease, at least in some intervals of time. As IFR distributions often model lifetimes governed by ageing processes, the operation of mixing can dramatically change the pattern of ageing. Therefore, the study of the shape of the observed (mixture) failure rate in a heterogeneous setting is important in many applications. We study discrete and continuous mixtures, obtain conditions for the mixture failure rate to tend to the failure rate of the strongest populations and describe asymptotic behavior as t tends to infty. Some demographic and engineering examples are considered. The corresponding inverse problem is discussed.

    Testing the Unbiased Forward Exchange Rate Hypothesis Using a Markov Switching Model and Instrumental Variables

    Get PDF
    This paper develops a model for the forward and spot exchange rate which allows for the presence of a Markov switching risk premium in the forward market and considers the issue of testing for the unbiased forward exchange rate (UFER) hypothesis. Using US/UK data, it is shown that the UFER hypothesis cannot be rejected provided that instrumental variables are used to account for within-regime correlation between explanatory variables and disturbances in the Markov switching model on which the test is based

    Towards an ecological understanding of firm founding and growth in emergent populations.

    Get PDF
    Organizational ecology is a fast growing domain in organization theory. During the past few years, the theory has evolved from a collection of rather unrelated concepts towards an integrated model of failure and founding, which has been tested with advanced empirical techniques. Despite this increasing convergence within the ecological boundaries, little integration occurs with other intellectual streams which can either be considered as complementary to a density dependence model or as a challenge to the basic assumptions of this model. This paper presents both a review of the theoretical and empirical methods developed during the past five years and an assessment of future research opportunities : can institutional theory, strategic management and industrial economics enrich and stretch the boundaries of the ecological model?

    Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading

    Get PDF
    We thank the Associate Editor, Michelle Cooke, and the reviewers, Ze'ev Reches and Yves Guéguen, for useful comments which helped to improve the manuscript. We thank J.G. Van Munster for providing access to the true triaxial apparatus at KSEPL and for technical support during the experimental program. We thank R. Pricci for assistance with technical drawings of the apparatus. This work was partly funded by NERC award NE/N002938/1 and by a NERC Doctoral Studentship, which we gratefully acknowledge. Supporting data are included in a supporting information file; any additional data may be obtained from J.B. (e-mail: [email protected]).Peer reviewedPublisher PD
    corecore