411,878 research outputs found

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    A note on the shortest common superstring of NGS reads

    Full text link
    The Shortest Superstring Problem (SSP) consists, for a set of strings S = {s_1,...,s_n}, to find a minimum length string that contains all s_i, 1 <= i <= k, as substrings. This problem is proved to be NP-Complete and APX-hard. Guaranteed approximation algorithms have been proposed, the current best ratio being 2+11/23, which has been achieved following a long and difficult quest. However, SSP is highly used in practice on next generation sequencing (NGS) data, which plays an increasingly important role in sequencing. In this note, we show that the SSP approximation ratio can be improved on NGS reads by assuming specific characteristics of NGS data that are experimentally verified on a very large sampling set

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Flux Analysis in Process Models via Causality

    Full text link
    We present an approach for flux analysis in process algebra models of biological systems. We perceive flux as the flow of resources in stochastic simulations. We resort to an established correspondence between event structures, a broadly recognised model of concurrency, and state transitions of process models, seen as Petri nets. We show that we can this way extract the causal resource dependencies in simulations between individual state transitions as partial orders of events. We propose transformations on the partial orders that provide means for further analysis, and introduce a software tool, which implements these ideas. By means of an example of a published model of the Rho GTP-binding proteins, we argue that this approach can provide the substitute for flux analysis techniques on ordinary differential equation models within the stochastic setting of process algebras
    corecore