94 research outputs found

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Time and frequency domain algorithms for speech coding

    Get PDF
    The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF)

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    The Telecommunications and Data Acquisition Report

    Get PDF
    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL) Office of Telecommunications and Data Acquisition (TDA) are given. Space communications, radio navigation, radio science, and ground-based radio and radar astronomy, activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations are reported. Also included is TDA-funded activity at JPL on data and information systems and reimbursable Deep Space Network (DSN) work performed for other space agencies through NASA

    The Space and Earth Science Data Compression Workshop

    Get PDF
    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    Side information exploitation, quality control and low complexity implementation for distributed video coding

    Get PDF
    Distributed video coding (DVC) is a new video coding methodology that shifts the highly complex motion search components from the encoder to the decoder, such a video coder would have a great advantage in encoding speed and it is still able to achieve similar rate-distortion performance as the conventional coding solutions. Applications include wireless video sensor networks, mobile video cameras and wireless video surveillance, etc. Although many progresses have been made in DVC over the past ten years, there is still a gap in RD performance between conventional video coding solutions and DVC. The latest development of DVC is still far from standardization and practical use. The key problems remain in the areas such as accurate and efficient side information generation and refinement, quality control between Wyner-Ziv frames and key frames, correlation noise modelling and decoder complexity, etc. Under this context, this thesis proposes solutions to improve the state-of-the-art side information refinement schemes, enable consistent quality control over decoded frames during coding process and implement highly efficient DVC codec. This thesis investigates the impact of reference frames on side information generation and reveals that reference frames have the potential to be better side information than the extensively used interpolated frames. Based on this investigation, we also propose a motion range prediction (MRP) method to exploit reference frames and precisely guide the statistical motion learning process. Extensive simulation results show that choosing reference frames as SI performs competitively, and sometimes even better than interpolated frames. Furthermore, the proposed MRP method is shown to significantly reduce the decoding complexity without degrading any RD performance. To minimize the block artifacts and achieve consistent improvement in both subjective and objective quality of side information, we propose a novel side information synthesis framework working on pixel granularity. We synthesize the SI at pixel level to minimize the block artifacts and adaptively change the correlation noise model according to the new SI. Furthermore, we have fully implemented a state-of-the-art DVC decoder with the proposed framework using serial and parallel processing technologies to identify bottlenecks and areas to further reduce the decoding complexity, which is another major challenge for future practical DVC system deployments. The performance is evaluated based on the latest transform domain DVC codec and compared with different standard codecs. Extensive experimental results show substantial and consistent rate-distortion gains over standard video codecs and significant speedup over serial implementation. In order to bring the state-of-the-art DVC one step closer to practical use, we address the problem of distortion variation introduced by typical rate control algorithms, especially in a variable bit rate environment. Simulation results show that the proposed quality control algorithm is capable to meet user defined target distortion and maintain a rather small variation for sequence with slow motion and performs similar to fixed quantization for fast motion sequence at the cost of some RD performance. Finally, we propose the first implementation of a distributed video encoder on a Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is efficiently implemented, using rate adaptive low-density-parity-check accumulative (LDPCA) codes, exploiting the hardware features and optimization techniques to improve the overall performance. Implementation results show that the WZ encoder is able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437 DSP running at 700MHz. This results in encoder speed 29 times faster than non-optimized encoder implementation. We also implemented a highly efficient DVC decoder using both serial and parallel technology based on a PC-HPC (high performance cluster) architecture, where the encoder is running in a general purpose PC and the decoder is running in a multicore HPC. The experimental results show that the parallelized decoder can achieve about 10 times speedup under various bit-rates and GOP sizes compared to the serial implementation and significant RD gains with regards to the state-of-the-art DISCOVER codec

    The development of speech coding and the first standard coder for public mobile telephony

    Get PDF
    This thesis describes in its core chapter (Chapter 4) the original algorithmic and design features of the ??rst coder for public mobile telephony, the GSM full-rate speech coder, as standardized in 1988. It has never been described in so much detail as presented here. The coder is put in a historical perspective by two preceding chapters on the history of speech production models and the development of speech coding techniques until the mid 1980s, respectively. In the epilogue a brief review is given of later developments in speech coding. The introductory Chapter 1 starts with some preliminaries. It is de- ??ned what speech coding is and the reader is introduced to speech coding standards and the standardization institutes which set them. Then, the attributes of a speech coder playing a role in standardization are explained. Subsequently, several applications of speech coders - including mobile telephony - will be discussed and the state of the art in speech coding will be illustrated on the basis of some worldwide recognized standards. Chapter 2 starts with a summary of the features of speech signals and their source, the human speech organ. Then, historical models of speech production which form the basis of di??erent kinds of modern speech coders are discussed. Starting with a review of ancient mechanical models, we will arrive at the electrical source-??lter model of the 1930s. Subsequently, the acoustic-tube models as they arose in the 1950s and 1960s are discussed. Finally the 1970s are reviewed which brought the discrete-time ??lter model on the basis of linear prediction. In a unique way the logical sequencing of these models is exposed, and the links are discussed. Whereas the historical models are discussed in a narrative style, the acoustic tube models and the linear prediction tech nique as applied to speech, are subject to more mathematical analysis in order to create a sound basis for the treatise of Chapter 4. This trend continues in Chapter 3, whenever instrumental in completing that basis. In Chapter 3 the reader is taken by the hand on a guided tour through time during which successive speech coding methods pass in review. In an original way special attention is paid to the evolutionary aspect. Speci??cally, for each newly proposed method it is discussed what it added to the known techniques of the time. After presenting the relevant predecessors starting with Pulse Code Modulation (PCM) and the early vocoders of the 1930s, we will arrive at Residual-Excited Linear Predictive (RELP) coders, Analysis-by-Synthesis systems and Regular- Pulse Excitation in 1984. The latter forms the basis of the GSM full-rate coder. In Chapter 4, which constitutes the core of this thesis, explicit forms of Multi-Pulse Excited (MPE) and Regular-Pulse Excited (RPE) analysis-by-synthesis coding systems are developed. Starting from current pulse-amplitude computation methods in 1984, which included solving sets of equations (typically of order 10-16) two hundred times a second, several explicit-form designs are considered by which solving sets of equations in real time is avoided. Then, the design of a speci??c explicitform RPE coder and an associated eÆcient architecture are described. The explicit forms and the resulting architectural features have never been published in so much detail as presented here. Implementation of such a codec enabled real-time operation on a state-of-the-art singlechip digital signal processor of the time. This coder, at a bit rate of 13 kbit/s, has been selected as the Full-Rate GSM standard in 1988. Its performance is recapitulated. Chapter 5 is an epilogue brie y reviewing the major developments in speech coding technology after 1988. Many speech coding standards have been set, for mobile telephony as well as for other applications, since then. The chapter is concluded by an outlook

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems
    • …
    corecore