108 research outputs found

    On the Cost of Negation for Dynamic Pruning

    Get PDF
    Negated query terms allow documents containing such terms to be filtered out of a search results list, supporting disambiguation. In this work, the effect of negation on the efficiency of disjunctive, top-k retrieval is examined. First, we show how negation can be integrated efficiently into two popular dynamic pruning algorithms. Then, we explore the efficiency of our approach, and show that while often efficient, negation can negatively impact the dynamic pruning effectiveness for certain queries

    Efficient & Effective Selective Query Rewriting with Efficiency Predictions

    Get PDF
    To enhance effectiveness, a user's query can be rewritten internally by the search engine in many ways, for example by applying proximity, or by expanding the query with related terms. However, approaches that benefit effectiveness often have a negative impact on efficiency, which has impacts upon the user satisfaction, if the query is excessively slow. In this paper, we propose a novel framework for using the predicted execution time of various query rewritings to select between alternatives on a per-query basis, in a manner that ensures both effectiveness and efficiency. In particular, we propose the prediction of the execution time of ephemeral (e.g., proximity) posting lists generated from uni-gram inverted index posting lists, which are used in establishing the permissible query rewriting alternatives that may execute in the allowed time. Experiments examining both the effectiveness and efficiency of the proposed approach demonstrate that a 49% decrease in mean response time (and 62% decrease in 95th-percentile response time) can be attained without significantly hindering the effectiveness of the search engine

    QuickRank: a C++ Suite of Learning to Rank Algorithms

    Get PDF
    Ranking is a central task of many Information Retrieval (IR) problems, particularly challenging in the case of large-scale Web collections where it involves effectiveness requirements and effciency constraints that are not common to other ranking-based applications. This paper describes QuickRank, a C++ suite of effcient and effective Learning to Rank (LtR) algorithms that allows high-quality ranking functions to be devised from possibly huge training datasets. QuickRank is a project with a double goal: i) answering industrial need of Tiscali S.p.A. for a exible and scalable LtR solution for learning ranking models from huge training datasets; ii) providing the IR research community with a exible, extensible and effcient LtR framework to design LtR solutions and fairly compare the performance of different algorithms and ranking models. This paper presents our choices in designing QuickRank and report some preliminary use experiences.Ranking is a central task of many Information Retrieval (IR) problems, particularly challenging in the case of large-scale Web collections where it involves eectiveness requirements and eciency constraints that are not common to other ranking-based applications. This paper describes QuickRank, a C++ suite of ecient and eective Learning to Rank (LtR) algorithms that allows high-quality ranking functions to be devised from possibly huge training datasets. QuickRank is a project with a double goal: i) answering industrial need of Tiscali S.p.A. for a exible and scalable LtR solution for learning ranking models from huge training datasets; ii) providing the IR research community with a exible, extensible and ecient LtR framework to design LtR solutions and fairly compare the performance of dierent algorithms and ranking models. This paper presents our choices in designing QuickRank and report some preliminary use experiences

    A unified posterior regularized topic model with maximum margin for learning-to-rank

    Get PDF
    While most methods for learning-to-rank documents only consider relevance scores as features, better results can often be obtained by taking into account the latent topic structure of the document collection. Existing approaches that consider latent topics follow a two-stage approach, in which topics are discovered in an unsupervised way, as usual, and then used as features for the learning-to-rank task. In contrast, we propose a learning-to-rank framework which integrates the supervised learning of a maximum margin classifier with the discovery of a suitable probabilistic topic model. In this way, the labelled data that is available for the learning-to-rank task can be exploited to identify the most appropriate topics. To this end, we use a unified constrained optimization framework, which can dynamically compute the latent topic similarity score between the query and the document. Our experimental results show a consistent improvement over the state-of-the-art learning-to-rank models
    • …
    corecore