2 research outputs found

    The tractability frontier of well-designed SPARQL queries

    Full text link
    We study the complexity of query evaluation of SPARQL queries. We focus on the fundamental fragment of well-designed SPARQL restricted to the AND, OPTIONAL and UNION operators. Our main result is a structural characterisation of the classes of well-designed queries that can be evaluated in polynomial time. In particular, we introduce a new notion of width called domination width, which relies on the well-known notion of treewidth. We show that, under some complexity theoretic assumptions, the classes of well-designed queries that can be evaluated in polynomial time are precisely those of bounded domination width

    Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

    Get PDF
    We study the complexity of evaluating well-designed pattern trees, a query language extending conjunctive queries with the possibility to define parts of the query to be optional. This possibility of optional parts is important for obtaining meaningful results over incomplete data sources as it is common in semantic web settings. Recently, a structural characterization of the classes of well-designed pattern trees that can be evaluated in polynomial time was shown. However, projection - a central feature of many query languages - was not considered in this study. We work towards closing this gap by giving a characterization of all tractable classes of simple well-designed pattern trees with projection (under some common complexity theoretic assumptions). Since well-designed pattern trees correspond to the fragment of well-designed {AND, OPTIONAL}-SPARQL queries this gives a complete description of the tractable classes of queries with projections in this fragment that can be characterized by the underlying graph structures of the queries
    corecore