51,491 research outputs found

    The hub covering problem over incomplete hub networks

    Get PDF
    Cataloged from PDF version of article.The rising trend in the transportation and telecommunication systems increases the importance of hub location studies in recent years. Hubs are special types of facilities in many-to-many distribution systems where flows are consolidated and disseminated. Analogous to location models, p-hub median, p-hub center and hub covering problems have been studied in the literature. In this thesis, we focus on a special type of hub covering problem which we call as “Hub Covering Problem over Incomplete Hub Networks”. Most of the studies in the hub location literature assume that the hub nodes are fully interconnected. We observe that, especially in cargo delivery systems, hub network is not complete. Thus, in this study we relax this fundamental assumption and propose integer programming models for single and multi allocation cases of the hub covering problem. We also propose three heuristics for both single and multi allocation cases of the problem. During the computational performance of proposed models and heuristics, CAB data was used. Results and comparisons of these heuristics will also be discussed.Kalaycılar, MuratM.S

    Hub location and Hub network design

    Get PDF
    Ankara : The Department of Industrial Engineering and the Institute of Engineering and Science of Bilkent University, 2009.Thesis (Ph.D.) -- Bilkent University, 2009.Includes bibliographical references leaves 138-150.he hub location problem deals with finding the location of hub facilities and allocating the demand nodes to these hub facilities so as to effectively route the demand between origin–destination pairs. Hub location problems arise in various application settings in telecommunication and transportation. In the extensive literature on the hub location problem, it has widely been assumed that the subgraph induced by the hub nodes is complete. Throughout this thesis we relax the complete hub network assumption in hub location problems and focus on designing hub networks that are not necessarily complete. We approach to hub location problems from a network design perspective. In addition to the location and allocation decisions, we also study the decision on how the hub network must be designed. We focus on the single allocation version of the problems where each demand center is allocated to a single hub node. We start with introducing the 3-stop hub covering network design problem. In this problem, we aim to design hub networks so that all origin– destination pairs receive service by visiting at most three hubs on a route. Then, we include hub network design decisions in the classical hub location problems introduced in the literature. We introduce the single allocation incomplete p-hub median, hub location with fixed costs, hub covering, and p-hub center network design problems to the literature. Lastly, we introduce the multimodal hub location and hub network design problem. We include the possibility of using different hub links, and allow for different transportation modes between hubs, and for different types of service time promises between origin–destination pairs, while designing the hub network in the multimodal problem. In this problem, we jointly consider transportation costs and travel times, which are studied separately in hub location problems presented in the literature. Computational analyses with all of the proposed models are presented on the various instances of the CAB data set and on the Turkish network.Alumur, Sibel AlevPh.D

    Solving the Uncapacitated Single Allocation p-Hub Median Problem on GPU

    Full text link
    A parallel genetic algorithm (GA) implemented on GPU clusters is proposed to solve the Uncapacitated Single Allocation p-Hub Median problem. The GA uses binary and integer encoding and genetic operators adapted to this problem. Our GA is improved by generated initial solution with hubs located at middle nodes. The obtained experimental results are compared with the best known solutions on all benchmarks on instances up to 1000 nodes. Furthermore, we solve our own randomly generated instances up to 6000 nodes. Our approach outperforms most well-known heuristics in terms of solution quality and time execution and it allows hitherto unsolved problems to be solved

    Air Taxi Skyport Location Problem for Airport Access

    Full text link
    Witnessing the rapid progress and accelerated commercialization made in recent years for the introduction of air taxi services in near future across metropolitan cities, our research focuses on one of the most important consideration for such services, i.e., infrastructure planning (also known as skyports). We consider design of skyport locations for air taxis accessing airports, where we present the skyport location problem as a modified single-allocation p-hub median location problem integrating choice-constrained user mode choice behavior into the decision process. Our approach focuses on two alternative objectives i.e., maximizing air taxi ridership and maximizing air taxi revenue. The proposed models in the study incorporate trade-offs between trip length and trip cost based on mode choice behavior of travelers to determine optimal choices of skyports in an urban city. We examine the sensitivity of skyport locations based on two objectives, three air taxi pricing strategies, and varying transfer times at skyports. A case study of New York City is conducted considering a network of 149 taxi zones and 3 airports with over 20 million for-hire-vehicles trip data to the airports to discuss insights around the choice of skyport locations in the city, and demand allocation to different skyports under various parameter settings. Results suggest that a minimum of 9 skyports located between Manhattan, Queens and Brooklyn can adequately accommodate the airport access travel needs and are sufficiently stable against transfer time increases. Findings from this study can help air taxi providers strategize infrastructure design options and investment decisions based on skyport location choices.Comment: 25 page

    An Improved Algorithm for Fixed-Hub Single Allocation Problem

    Full text link
    This paper discusses the fixed-hub single allocation problem (FHSAP). In this problem, a network consists of hub nodes and terminal nodes. Hubs are fixed and fully connected; each terminal node is connected to a single hub which routes all its traffic. The goal is to minimize the cost of routing the traffic in the network. In this paper, we propose a linear programming (LP)-based rounding algorithm. The algorithm is based on two ideas. First, we modify the LP relaxation formulation introduced in Ernst and Krishnamoorthy (1996, 1999) by incorporating a set of validity constraints. Then, after obtaining a fractional solution to the LP relaxation, we make use of a geometric rounding algorithm to obtain an integral solution. We show that by incorporating the validity constraints, the strengthened LP often provides much tighter upper bounds than the previous methods with a little more computational effort, and the solution obtained often has a much smaller gap with the optimal solution. We also formulate a robust version of the FHSAP and show that it can guard against data uncertainty with little cost

    Equity, discrimination and remote policy: Investigating the centralization of remote service delivery in the Northern Territory

    Get PDF
    Two hypotheses have been advanced to explain the spatial patterning of service accessibility. The bureaucratic hypothesis holds that spatial inequalities are unpatterned and result from the application of decisions rules, while the competing political hypothesis suggests that politically-motivated decision making results in discriminatory outcomes. We use the example of the centralization of service provision in remote Indigenous communities in Australia's Northern Territory to show that these hypotheses may in fact be complementary. In recent years, government rhetoric about Australia's remote Indigenous communities has moved to focus on economic viability instead of social justice. One policy realization of this rhetoric has been the designation of ‘growth towns’ and ‘priority communities’ to act as service hubs for surrounding communities. The introduction of such hubs was examined and substantial inequality in access to service hubs was found. Inequality and overall system efficiency could be reduced with by optimizing the selection of hubs but the imposition of any hub-and-spoke mode in the study area was associated with racially-patterned patterned inequality of access. We conclude that when policy contexts are politically motivated, the application of racially-blind decision rules may result in raciallydiscriminatory spatial inequalities

    Satellite system performance assessment for in-flight entertainment and air traffic control

    Get PDF
    Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. However, the development of a dedicated satellite system for ATS (Air Traffic Services) and AOC (Airline Operational Communications) seems to be a long-term perspective. The objective of the presented system design is to provide both passenger application traffic access (Internet, GSM) and a high-reliability channel for aeronautical applications using the same satellite links. Due to the constraints in capacity and radio bandwidth allocation, very high frequencies (above 20 GHz) are considered here. The corresponding design implications for the air interface are taken into account and access performances are derived using a dedicated simulation model. Some preliminary results are shown in this paper to demonstrate the technical feasibility of such system design with increased capacity. More details and the open issues will be studied in the future of this research work
    • 

    corecore