14,643 research outputs found

    HARQ Buffer Management: An Information-Theoretic View

    Full text link
    A key practical constraint on the design of Hybrid automatic repeat request (HARQ) schemes is the size of the on-chip buffer that is available at the receiver to store previously received packets. In fact, in modern wireless standards such as LTE and LTE-A, the HARQ buffer size is one of the main drivers of the modem area and power consumption. This has recently highlighted the importance of HARQ buffer management, that is, of the use of buffer-aware transmission schemes and of advanced compression policies for the storage of received data. This work investigates HARQ buffer management by leveraging information-theoretic achievability arguments based on random coding. Specifically, standard HARQ schemes, namely Type-I, Chase Combining and Incremental Redundancy, are first studied under the assumption of a finite-capacity HARQ buffer by considering both coded modulation, via Gaussian signaling, and Bit Interleaved Coded Modulation (BICM). The analysis sheds light on the impact of different compression strategies, namely the conventional compression log-likelihood ratios and the direct digitization of baseband signals, on the throughput. Then, coding strategies based on layered modulation and optimized coding blocklength are investigated, highlighting the benefits of HARQ buffer-aware transmission schemes. The optimization of baseband compression for multiple-antenna links is also studied, demonstrating the optimality of a transform coding approach.Comment: submitted to IEEE International Symposium on Information Theory (ISIT) 2015. 29 pages, 12 figures, submitted to journal publicatio

    Fast MicroSleep and Yawning Detections to Assess Driver’s Vigilance Level

    Get PDF
    Driver hypovigilance, often caused by fatigue and/or drowsiness, receives increasing attention in the last years; especially after it became evident that hypovigilance is a one of the major factor causing traffic accidents. Monitoring and detecting driver hypovigilance could contribute significantly to improve road traffic safety. This paper proposes fast methods to identify drowsiness and fatigue using respectively microsleep and yawning detections. In this study, the proposed scheme begins by a face detection using local Successive Mean Quantization Transform (SMQT) features and split up Sparse Network of Winnows (SNoW) classifier. After performing face detection, the novel approach for eye/mouth detection, based on Circular Hough Transform (CHT), is applied on eyes and mouth extracted regions. Our proposed methods works in real-time and yield a high detection rates whether for drowsiness or fatigue detections

    Periodic orbit quantization of chaotic systems with strong pruning

    Full text link
    The three-disk system, which for many years has served as a paradigm for the usefulness of cycle expansion methods, represents an extremely hard problem to semiclassical quantization when the disks are moved closer and closer together, since (1) pruning of orbits sets in, rendering the symbolic code incomplete, and (2) the number of orbits necessary to obtain accurate semiclassical eigenvalues proliferates exponentially. In this note we show that an alternative method, viz. harmonic inversion, which does not rely on the existence of complete symbolic dynamics or other specific properties of systems, provides a key to solving the problem of semiclassical quantization of systems with strong pruning. For the closed three-disk system we demonstrate how harmonic inversion, augmented by a signal cross-correlation technique, allows one to semiclassically calculate the energies up to the 28th excited state with high accuracy.Comment: 9 pages, 3 figures, submitted to Phys. Lett.

    Vector quantization

    Get PDF
    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding
    • …
    corecore