498 research outputs found

    Computational Aspects of Proofs in Modal Logic

    Get PDF
    Various modal logics seem well suited for developing models of knowledge, belief, time, change, causality, and other intensional concepts. Most such systems are related to the classical Lewis systems, and thereby have a substantial body of conventional proof theoretical results. However, most of the applied literature examines modal logics from a semantical point of view, rather than through proof theory. It appears arguments for validity are more clearly stated in terms of a semantical explanation, rather than a classical proof-theoretic one. We feel this is due to the inability of classical proof theories to adequately represent intensional aspects of modal semantics. This thesis develops proof theoretical methods which explicitly represent the underlying semantics of the modal formula in the proof. We initially develop a Gentzen style proof system which contains semantic information in the sequents. This system is, in turn, used to develop natural deduction proofs. Another semantic style proof representation, the modal expansion tree is developed. This structure can be used to derive either Gentzen style or Natural Deduction proofs. We then explore ways of automatically generating MET proofs, and prove sound and complete heuristics for that procedure. These results can be extended to most propositional system using a Kripke style semantics and a fist order theory of the possible worlds relation. Examples are presented for standard T, S4, and S5 systems, systems of knowledge and belief, and common knowledge. A computer program which implements the theory is briefly examined in the appendix

    Basic Description Logics

    Get PDF
    This chapter provides an introduction to Description Logics as a formal language for representing knowledge and reasoning about it. It first gives a short overview of the ideas underlying Description Logics. Then it introduces syntax and semantics, covering the basic constructors that are used in systems or have been introduced in the literature, and the way these constructors can be used to build knowledge bases. Finally, it defines the typical inference problems, shows how they are interrelated, and describes different approaches for effectively solving these problems. Some of the topics that are only briefly mentioned in this chapter will be treated in more detail in subsequent chapters

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Interpolation in Linear Logic and Related Systems

    Full text link
    We prove that there are continuum-many axiomatic extensions of the full Lambek calculus with exchange that have the deductive interpolation property. Further, we extend this result to both classical and intuitionistic linear logic as well as their multiplicative-additive fragments. None of the logics we exhibit have the Craig interpolation property, but we show that they all enjoy a guarded form of Craig interpolation. We also exhibit continuum-many axiomatic extensions of each of these logics without the deductive interpolation property
    • …
    corecore