18 research outputs found

    Iterative forcing and hyperimmunity in reverse mathematics

    Full text link
    The separation between two theorems in reverse mathematics is usually done by constructing a Turing ideal satisfying a theorem P and avoiding the solutions to a fixed instance of a theorem Q. Lerman, Solomon and Towsner introduced a forcing technique for iterating a computable non-reducibility in order to separate theorems over omega-models. In this paper, we present a modularized version of their framework in terms of preservation of hyperimmunity and show that it is powerful enough to obtain the same separations results as Wang did with his notion of preservation of definitions.Comment: 15 page

    Algorithmic randomness, reverse mathematics, and the dominated convergence theorem

    Get PDF
    We analyze the pointwise convergence of a sequence of computable elements of L^1(2^omega) in terms of algorithmic randomness. We consider two ways of expressing the dominated convergence theorem and show that, over the base theory RCA_0, each is equivalent to the assertion that every G_delta subset of Cantor space with positive measure has an element. This last statement is, in turn, equivalent to weak weak K\"onig's lemma relativized to the Turing jump of any set. It is also equivalent to the conjunction of the statement asserting the existence of a 2-random relative to any given set and the principle of Sigma_2 collection

    Open questions about Ramsey-type statements in reverse mathematics

    Get PDF
    Ramsey's theorem states that for any coloring of the n-element subsets of N with finitely many colors, there is an infinite set H such that all n-element subsets of H have the same color. The strength of consequences of Ramsey's theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey's theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose during this study. The inability to answer those questions reveals some gaps in our understanding of the combinatorics of Ramsey's theorem.Comment: 15 page

    The weakness of the pigeonhole principle under hyperarithmetical reductions

    Full text link
    The infinite pigeonhole principle for 2-partitions (RT21\mathsf{RT}^1_2) asserts the existence, for every set AA, of an infinite subset of AA or of its complement. In this paper, we study the infinite pigeonhole principle from a computability-theoretic viewpoint. We prove in particular that RT21\mathsf{RT}^1_2 admits strong cone avoidance for arithmetical and hyperarithmetical reductions. We also prove the existence, for every Δn0\Delta^0_n set, of an infinite lown{}_n subset of it or its complement. This answers a question of Wang. For this, we design a new notion of forcing which generalizes the first and second-jump control of Cholak, Jockusch and Slaman.Comment: 29 page
    corecore