5 research outputs found

    Operations on Automata with All States Final

    Full text link
    We study the complexity of basic regular operations on languages represented by incomplete deterministic or nondeterministic automata, in which all states are final. Such languages are known to be prefix-closed. We get tight bounds on both incomplete and nondeterministic state complexity of complement, intersection, union, concatenation, star, and reversal on prefix-closed languages.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Advanced Topics on State Complexity of Combined Operations

    Get PDF
    State complexity is a fundamental topic in formal languages and automata theory. The study of state complexity is also strongly motivated by applications of finite automata in software engineering, programming languages, natural language and speech processing and other practical areas. Since many of these applications use automata of large sizes, it is important to know the number of states of the automata. In this thesis, we firstly discuss the state complexities of individual operations on regular languages, including union, intersection, star, catenation, reversal and so on. The state complexity of an operation on unary languages is usually different from that of the same operation on languages over a larger alphabet. Both kinds of state complexities are reviewed in the thesis. Secondly, we study the exact state complexities of twelve combined operations on regular languages. The state complexities of most of these combined operations are not equal to the compositions of the state complexities of the individual operations which make up these combined operations. We also explore the reason for this difference. Finally, we introduce the concept of estimation and approximation of state complexity. We show close estimates and approximations of the state complexities of six combined operations on regular languages which are good enough to use in practice

    Some Single and Combined Operations on Formal Languages: Algebraic Properties and Complexity

    Get PDF
    In this thesis, we consider several research questions related to language operations in the following areas of automata and formal language theory: reversibility of operations, generalizations of (comma-free) codes, generalizations of basic operations, language equations, and state complexity. Motivated by cryptography applications, we investigate several reversibility questions with respect to the parallel insertion and deletion operations. Among the results we obtained, the following result is of particular interest. For languages L1, L2 ⊆ Σ∗, if L2 satisfies the condition L2ΣL2 ∩ Σ+L2Σ+ = ∅, then any language L1 can be recovered after first parallel-inserting L2 into L1 and then parallel-deleting L2 from the result. This property reminds us of the definition of comma-free codes. Following this observation, we define the notions of comma codes and k-comma codes, and then generalize them to comma intercodes and k-comma intercodes, respectively. Besides proving all these new codes are indeed codes, we obtain some interesting properties, as well as several hierarchical results among the families of the new codes and some existing codes such as comma-free codes, infix codes, and bifix codes. Another topic considered in this thesis are some natural generalizations of basic language operations. We introduce block insertion on trajectories and block deletion on trajectories, which properly generalize several sequential as well as parallel binary language operations such as catenation, sequential insertion, k-insertion, parallel insertion, quotient, sequential deletion, k-deletion, etc. We obtain several closure properties of the families of regular and context-free languages under the new operations by using some relationships between these new operations and shuffle and deletion on trajectories. Also, we obtain several decidability results of language equation problems with respect to the new operations. Lastly, we study the state complexity of the following combined operations: L1L2∗, L1L2R, L1(L2 ∩ L3), L1(L2 ∪ L3), (L1L2)R, L1∗L2, L1RL2, (L1 ∩ L2)L3, (L1 ∪ L2)L3, L1L2 ∩ L3, and L1L2 ∪ L3 for regular languages L1, L2, and L3. These are all the combinations of two basic operations whose state complexities have not been studied in the literature
    corecore