512 research outputs found

    Inverse spectral problems for energy-dependent Sturm-Liouville equations

    Full text link
    We study the inverse spectral problem of reconstructing energy-dependent Sturm-Liouville equations from their Dirichlet spectra and sequences of the norming constants. For the class of problems under consideration, we give a complete description of the corresponding spectral data, suggest a reconstruction algorithm, and establish uniqueness of reconstruction. The approach is based on connection between spectral problems for energy-dependent Sturm-Liouville equations and for Dirac operators of special form.Comment: AMS-LaTeX, 28 page

    The p-Laplace equation in domains with multiple crack section via pencil operators

    Get PDF
    The p-Laplace equation \n \cdot (|\n u|^n \n u)=0 \whereA n>0, in a bounded domain \O \subset \re^2, with inhomogeneous Dirichlet conditions on the smooth boundary \p \O is considered. In addition, there is a finite collection of curves \Gamma = \Gamma_1\cup...\cup\Gamma_m \subset \O, \quad \{on which we assume homogeneous Dirichlet boundary conditions} \quad u=0, modeling a multiple crack formation, focusing at the origin 0 \in \O. This makes the above quasilinear elliptic problem overdetermined. Possible types of the behaviour of solution u(x,y)u(x,y) at the tip 0 of such admissible multiple cracks, being a "singularity" point, are described, on the basis of blow-up scaling techniques and a "nonlinear eigenvalue problem". Typical types of admissible cracks are shown to be governed by nodal sets of a countable family of nonlinear eigenfunctions, which are obtained via branching from harmonic polynomials that occur for n=0n=0. Using a combination of analytic and numerical methods, saddle-node bifurcations in nn are shown to occur for those nonlinear eigenvalues/eigenfunctions.Comment: arXiv admin note: substantial text overlap with arXiv:1310.065

    Spectral stability of nonlinear waves in KdV-type evolution equations

    Full text link
    This paper concerns spectral stability of nonlinear waves in KdV-type evolution equations. The relevant eigenvalue problem is defined by the composition of an unbounded self-adjoint operator with a finite number of negative eigenvalues and an unbounded non-invertible symplectic operator ∂x\partial_x. The instability index theorem is proven under a generic assumption on the self-adjoint operator both in the case of solitary waves and periodic waves. This result is reviewed in the context of other recent results on spectral stability of nonlinear waves in KdV-type evolution equations.Comment: 15 pages, no figure

    Existence and Uniqueness of Perturbation Solutions to DSGE Models

    Get PDF
    We prove that standard regularity and saddle stability assumptions for linear approximations are sufficient to guarantee the existence of a unique solution for all undetermined coefficients of nonlinear perturbations of arbitrary order to discrete time DSGE models. We derive the perturbation using a matrix calculus that preserves linear algebraic structures to arbitrary orders of derivatives, enabling the direct application of theorems from matrix analysis to prove our main result. As a consequence, we provide insight into several invertibility assumptions from linear solution methods, prove that the local solution is independent of terms first order in the perturbation parameter, and relax the assumptions needed for the local existence theorem of perturbation solutions.Perturbation, matrix calculus, DSGE, solution methods, Bézout theorem; Sylvester equations

    Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications

    Full text link
    • …
    corecore