5 research outputs found

    Differential quadrature method for space-fractional diffusion equations on 2D irregular domains

    Full text link
    In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by L\'{e}vy processes, which are sometimes called super-diffusion equations. In this article, we develop the differential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.Comment: 25 pages, 25 figures, 7 table

    A Meshless Method Based on the Fundamental Solution and Radial Basis Function for Solving an Inverse Heat Conduction Problem

    Get PDF
    We propose a new meshless method to solve a backward inverse heat conduction problem. The numerical scheme, based on the fundamental solution of the heat equation and radial basis functions (RBFs), is used to obtain a numerical solution. Since the coefficients matrix is ill-conditioned, the Tikhonov regularization (TR) method is employed to solve the resulted system of linear equations. Also, the generalized cross-validation (GCV) criterion is applied to choose a regularization parameter. A test problem demonstrates the stability, accuracy, and efficiency of the proposed method

    The shape parameter in the Gaussian function II

    No full text
    corecore