19 research outputs found

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    Sound and Precise Malware Analysis for Android via Pushdown Reachability and Entry-Point Saturation

    Full text link
    We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior. To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Auto- mated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a ver- sion of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.Comment: Appears in 3rd Annual ACM CCS workshop on Security and Privacy in SmartPhones and Mobile Devices (SPSM'13), Berlin, Germany, 201

    Introspective Pushdown Analysis of Higher-Order Programs

    Full text link
    In the static analysis of functional programs, pushdown flow analysis and abstract garbage collection skirt just inside the boundaries of soundness and decidability. Alone, each method reduces analysis times and boosts precision by orders of magnitude. This work illuminates and conquers the theoretical challenges that stand in the way of combining the power of these techniques. The challenge in marrying these techniques is not subtle: computing the reachable control states of a pushdown system relies on limiting access during transition to the top of the stack; abstract garbage collection, on the other hand, needs full access to the entire stack to compute a root set, just as concrete collection does. \emph{Introspective} pushdown systems resolve this conflict. Introspective pushdown systems provide enough access to the stack to allow abstract garbage collection, but they remain restricted enough to compute control-state reachability, thereby enabling the sound and precise product of pushdown analysis and abstract garbage collection. Experiments reveal synergistic interplay between the techniques, and the fusion demonstrates "better-than-both-worlds" precision.Comment: Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming, 2012, AC

    An incremental points-to analysis with CFL-reachability

    Get PDF
    Abstract. Developing scalable and precise points-to analyses is increasingly important for analysing and optimising object-oriented programs where pointers are used pervasively. An incremental analysis for a program updates the existing analysis information after program changes to avoid reanalysing it from scratch. This can be efficiently deployed in software development environments where code changes are often small and frequent. This paper presents an incremental approach for demand-driven context-sensitive points-to analyses based on Context-Free Language (CFL) reachability. By tracing the CFL-reachable paths traversed in computing points-to sets, we can precisely identify and recompute on demand only the points-to sets affected by the program changes made. Combined with a flexible policy for controlling the granularity of traces, our analysis achieves significant speedups with little space overhead over reanalysis from scratch when evaluated with a null dereferencing client using 14 Java benchmarks.

    Demand-Driven Alias Analysis for C

    Full text link
    This paper presents a demand-driven, flow-insensitive analysis algorithm for answering may-alias queries. We formulate the computation of alias queries as a CFL-reachability problem, and use this formulation to derive a demand-driven analysis algorithm. The analysis uses a worklist algorithm that gradually explores the program structure and stops as soon as enough evidence is gathered to answer the query. Unlike existing techniques, our approach does not require building or intersecting points-to sets. Experiments show that our technique is effective at answering alias queries accurately and efficiently in a demand-driven fashion. For a set of alias queries from the SPEC2000 benchmarks, our analysis is able to accurately answer 97% of the queries in less than 1 millisecond per query. Compared to a demand-driven points-to analysis that constructs and intersects points-to sets on-the-fly, our alias analysis is more than two times faster

    On Algorithms and Complexity for Sets with Cardinality Constraints

    Get PDF
    Typestate systems ensure many desirable properties of imperative programs, including initialization of object fields and correct use of stateful library interfaces. Abstract sets with cardinality constraints naturally generalize typestate properties: relationships between the typestates of objects can be expressed as subset and disjointness relations on sets, and elements of sets can be represented as sets of cardinality one. Motivated by these applications, this paper presents new algorithms and new complexity results for constraints on sets and their cardinalities. We study several classes of constraints and demonstrate a trade-off between their expressive power and their complexity. Our first result concerns a quantifier-free fragment of Boolean Algebra with Presburger Arithmetic. We give a nondeterministic polynomial-time algorithm for reducing the satisfiability of sets with symbolic cardinalities to constraints on constant cardinalities, and give a polynomial-space algorithm for the resulting problem. In a quest for more efficient fragments, we identify several subclasses of sets with cardinality constraints whose satisfiability is NP-hard. Finally, we identify a class of constraints that has polynomial-time satisfiability and entailment problems and can serve as a foundation for efficient program analysis.Comment: 20 pages. 12 figure
    corecore