1,534 research outputs found

    Simultaneously continuous retraction and Bishop-Phelps-Bollob\'as type theorem

    Full text link
    We study the existence of a retraction from the dual space XX^* of a (real or complex) Banach space XX onto its unit ball BXB_{X^*} which is uniformly continuous in norm topology and continuous in weak-* topology. Such a retraction is called a uniformly simultaneously continuous retraction. It is shown that if XX has a normalized unconditional Schauder basis with unconditional basis constant 1 and XX^* is uniformly monotone, then a uniformly simultaneously continuous retraction from XX^* onto BXB_{X^*} exists. It is also shown that if {Xi}\{X_i\} is a family of separable Banach spaces whose duals are uniformly convex with moduli of convexity δi(ε)\delta_i(\varepsilon) such that infiδi(ε)>0\inf_i \delta_i(\varepsilon)>0 and X=[Xi]c0X= \left[\bigoplus X_i\right]_{c_0} or X=[Xi]pX=\left[\bigoplus X_i\right]_{\ell_p} for 1p<1\le p<\infty, then a uniformly simultaneously continuous retraction exists from XX^* onto BXB_{X^*}. The relation between the existence of a uniformly simultaneously continuous retraction and the Bishsop-Phelps-Bollob\'as property for operators is investigated and it is proved that the existence of a uniformly simultaneously continuous retraction from XX^* onto its unit ball implies that a pair (X,C0(K))(X, C_0(K)) has the Bishop-Phelps-Bollob\'as property for every locally compact Hausdorff spaces KK. As a corollary, we prove that (C0(S),C0(K))(C_0(S), C_0(K)) has the Bishop-Phelps-Bollob\'as property if C0(S)C_0(S) and C0(K)C_0(K) are the spaces of all real-valued continuous functions vanishing at infinity on locally compact metric space SS and locally compact Hausdorff space KK respectively.Comment: 15 page

    On continuous choice of retractions onto nonconvex subsets

    Get PDF
    For a Banach space BB and for a class \A of its bounded closed retracts, endowed with the Hausdorff metric, we prove that retractions on elements A \in \A can be chosen to depend continuously on AA, whenever nonconvexity of each A \in \A is less than \f{1}{2}. The key geometric argument is that the set of all uniform retractions onto an \a-paraconvex set (in the spirit of E. Michael) is \frac{\a}{1-\a}-paraconvex subset in the space of continuous mappings of BB into itself. For a Hilbert space HH the estimate \frac{\a}{1-\a} can be improved to \frac{\a (1+\a^{2})}{1-\a^{2}} and the constant \f{1}{2} can be reduced to the root of the equation \a+ \a^{2}+a^{3}=1

    Polyfolds: A First and Second Look

    Full text link
    Polyfold theory was developed by Hofer-Wysocki-Zehnder by finding commonalities in the analytic framework for a variety of geometric elliptic PDEs, in particular moduli spaces of pseudoholomorphic curves. It aims to systematically address the common difficulties of compactification and transversality with a new notion of smoothness on Banach spaces, new local models for differential geometry, and a nonlinear Fredholm theory in the new context. We shine meta-mathematical light on the bigger picture and core ideas of this theory. In addition, we compiled and condensed the core definitions and theorems of polyfold theory into a streamlined exposition, and outline their application at the example of Morse theory.Comment: 62 pages, 2 figures. Example 2.1.3 has been modified. Final version, to appear in the EMS Surv. Math. Sc
    corecore