14,245 research outputs found

    Basis Token Consistency: A Practical Mechanism for Strong Web Cache Consistency

    Full text link
    With web caching and cache-related services like CDNs and edge services playing an increasingly significant role in the modern internet, the problem of the weak consistency and coherence provisions in current web protocols is becoming increasingly significant and drawing the attention of the standards community [LCD01]. Toward this end, we present definitions of consistency and coherence for web-like environments, that is, distributed client-server information systems where the semantics of interactions with resource are more general than the read/write operations found in memory hierarchies and distributed file systems. We then present a brief review of proposed mechanisms which strengthen the consistency of caches in the web, focusing upon their conceptual contributions and their weaknesses in real-world practice. These insights motivate a new mechanism, which we call "Basis Token Consistency" or BTC; when implemented at the server, this mechanism allows any client (independent of the presence and conformity of any intermediaries) to maintain a self-consistent view of the server's state. This is accomplished by annotating responses with additional per-resource application information which allows client caches to recognize the obsolescence of currently cached entities and identify responses from other caches which are already stale in light of what has already been seen. The mechanism requires no deviation from the existing client-server communication model, and does not require servers to maintain any additional per-client state. We discuss how our mechanism could be integrated into a fragment-assembling Content Management System (CMS), and present a simulation-driven performance comparison between the BTC algorithm and the use of the Time-To-Live (TTL) heuristic.National Science Foundation (ANI-9986397, ANI-0095988

    ENABLING MOBILE DEVICES TO HOST CONSUMERS AND PROVIDERS OF RESTFUL WEB SERVICES

    Get PDF
    The strong growth in the use of mobile devices such as smartphones and tablets in Enterprise Information Systems has led to growing research in the area of mobile Web services. Web services are applications that are developed based on network standards such as Services Oriented Architecture and Representational State Transfer (REST). The mobile research community mostly focused on facilitating the mobile devices as client consumers especially in heterogeneous Web services. However, with the advancement in mobile device capabilities in terms of processing power and storage, this thesis seeks to utilize these devices as hosts of REST Web services. In order to host services on mobile devices, some key challenges have to be addressed. Since data and services accessibility is facilitated by the mobile devices which communicate via unstable wireless networks, the challenges of network latency and synchronization of data (i.e. the Web resources) among the mobile participants must be addressed. To address these challenges, this thesis proposes a cloud-based middleware that enables reliable communication between the mobile hosts in unreliable Wi-Fi networks. The middleware employs techniques such as message routing and Web resources state changes detection in order to push data to the mobile participants in real time. Additionally, to ensure high availability of data, the proposed middleware has a cache component which stores the replicas of the mobile hosts’ Web resources. As a result, in case a mobile host is disconnected, the Web resources of the host can be accessed on the middleware. The key contributions of this thesis are the identification of mobile devices as hosts of RESTful Web services and the implementation of middleware frameworks that support mobile communication in unreliable networks

    Toward 2^W beyond Web 2.0

    Get PDF
    From its inception as a global hypertext system, the Web has evolved into a universal platform for deploying loosely coupled distributed applications. 2^W is a result of the exponentially growing Web building on itself to move from a Web of content to a Web of applications

    Service-Oriented Architecture Supporting Mobile Access to an ERP System

    Get PDF
    • …
    corecore