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ABSTRACT 

The strong growth in the use of mobile devices such as smartphones and tablets in 

Enterprise Information Systems has led to growing research in the area of mobile Web services. 

Web services are applications that are developed based on network standards such as Services 

Oriented Architecture and Representational State Transfer (REST). The mobile research 

community mostly focused on facilitating the mobile devices as client consumers especially in 

heterogeneous Web services. However, with the advancement in mobile device capabilities in 

terms of processing power and storage, this thesis seeks to utilize these devices as hosts of REST 

Web services.  

In order to host services on mobile devices, some key challenges have to be addressed. 

Since data and services accessibility is facilitated by the mobile devices which communicate via 

unstable wireless networks, the challenges of network latency and synchronization of data (i.e. 

the Web resources) among the mobile participants must be addressed.  

To address these challenges, this thesis proposes a cloud-based middleware that enables 

reliable communication between the mobile hosts in unreliable Wi-Fi networks. The middleware 

employs techniques such as message routing and Web resources state changes detection in order 

to push data to the mobile participants in real time. Additionally, to ensure high availability of 

data, the proposed middleware has a cache component which stores the replicas of the mobile 

hosts’ Web resources. As a result, in case a mobile host is disconnected, the Web resources of 

the host can be accessed on the middleware. The key contributions of this thesis are the 

identification of mobile devices as hosts of RESTful Web services and the implementation of 

middleware frameworks that support mobile communication in unreliable networks.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Mobile devices such as smartphones and tablets have not only become part of us at 

homes and offices, but are also shaping how enterprise businesses and transactions are being 

carried out [1]. These devices are gaining widespread usage in Enterprise Information Systems 

(EIS) [2] - which are application-oriented infrastructures that manage information in 

organizations. Also, since Web services [3], that is network and Web centric applications, are 

platform independent and ensure easy interoperability between system components as reported 

by Beal [4], enterprises are looking more at modeling data and information as Web services.     

However, in most mobile distributed systems, the mobile devices are employed as client 

consumers of heterogeneous Web services. Hence, the mobile node is used to render data that is 

hosted on back-end components such as servers. Conversely, with the increasing mobile 

processing power and advancement in storage space on these devices, our research aims at 

facilitating the mobile devices as a Web services hosting nodes. In the case of mobile hosting, 

the mobile devices become Web services provider nodes, thereby allowing other mobile 

participants to access Web resources that reside on the mobile hosts. Some examples of 

Enterprise Information Systems where our research is applicable are University Administration 

Application Systems, Insurance Sales Applications, and mission critical systems such as E-

Health [5], [6], [7] - where data is expected to be accessed over a secure wireless network for 

health care delivery. 

Though Web services can be built using the Service-Oriented Architecture (SOA) model 

[8], the model does not lend itself well in mobile distributed environment due to the constraints 

on network bandwidth in mobile networks. This is largely because SOA passes huge XML data 
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across system components [9], [10]. Thus, this thesis puts forward the use of the 

Representational State Transfer (REST) [11], [12] approach, which is a lightweight protocol that 

can be invoked over HTTP. 

  

Hub

 

Figure 1.1: Distributed Mobile Environment   

Mobile hosts use wireless channels to communicate within system components in a 

distributed mobile environment as shown above in Figure 1.1. Mobile service providers in 

Canada such as Fido, Rogers, and SaskTel offer their customers data plans for fees that enable 

mobile device users to access backend systems and download contents. In addition, mobile 

devices allow users to connect to hotspots via Wi-Fi connectivity. Thus, data in multimedia 

formats can be shared between smartphones, tablets and notebooks. Also, each of these devices 

has an embedded browser that enables the deployment of web-based applications on them [10]. 

However, in mobile distributed systems, connectivity is not guaranteed due to the 

intermittent loss of connectivity in wireless networks. Users can find themselves in spots within 
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buildings where there is no Wi-Fi connectivity. Disconnections can also be attributed to end-user 

mobility and unstable networks from the service provider. In view of the intermittent losses in 

connectivity the challenges of network latency and data synchronization among the mobile 

participants have to be addressed. 

1.2 Challenges in Mobile Web Hosting Environment 

Enterprise Information Systems have been using desktops in reliable wired environments in 

one central location. Now, enterprise services have been extended to mobile devices in unreliable 

network environments [1], [5]. Key challenges faced in this new paradigm which our research 

focuses on are: synchronization of Web resources updates (i.e. resources state changes) and 

reducing network latency that arises from resources propagation. Figure 1.2 shows the human 

experts and the various client devices that are under consideration in this work. 

P1

P3

P2

SP

SP

User Laptop

Laptop

User

User

User

User

User

Tablet

Tablet

P4
Web Server

 

Figure 1.2: Mobile participants in wireless networks 
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The smartphones (SP) and tablets connect via data plans (e.g. Fido, SaskTel and so on) or 

Wi-Fi (e.g. 802.11g) to proxies (P1, P2, P3 and P4) to overcome problems related to fluctuating 

bandwidth. To achieve this, some researchers employ proxies, that are intermediary servers, with 

functionalities such as caching, event handling, and message routing to communicate with the 

client devices [13], [14], [15], [16]. Furthermore, cloud computing, which is a network 

infrastructure that supports mobile devices to access services in the cloud via the Internet, can be 

employed to lift the heavy-workload on the mobile client [10].  

Also, users on a data plan have to pay based on the amount of data downloaded; so our 

research is recommending the use of Wi-Fi connection. However, in a Wi-Fi environment, 

connectivity is unstable due to blackout zones in buildings, and there are times when there are 

interferences and fluctuations due to the large number of users of the network at the same time. 

In addition, though there has been an improvement in memory size of mobile devices recently, 

the mobile capacity is still not as good as the modern desktops [17].  

1.2.1 Network Latency 

Updates in mobile distributed systems can be slow because it takes a certain time for a 

request-response to be successful in a bi-direction. Figure 1.3 shows the times t1, t2 and t3 taken 

to propagate a Web resource, R, on the tablet device of user 1 to the smartphone device of user 2 

through the proxy. The total time is t = t1 + t2 + t3.  

User 1
Tablet

Web ServerProxy

R
R

R

User 2
Phone

R

t1 t2 t3

 

Figure 1.3: Total time for a push request 
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Latency can be caused by intermittent loss in connectivity or bandwidth fluctuation due 

to user mobility and limitations on geographical boundaries for Wi-Fi access. As shown in 

Figure 1.4, proxies which are hosted in the cloud are used to host resources and provide services 

to mobile clients but there is still update delay due to network loss. 

Phone

User 1
Tablet

Web ServerProxy

R
R

User 2

R

 

Figure 1.4: Unstable Wi-Fi connectivity    

1.2.2 Resource State Synchronization  

Due to network latency, updates that arrive on the proxy will not be seen immediately on 

the mobile hosts. The potential loss of connectivity (network partition failure) between mobile 

components also means the data in cache can be outdated on the mobile host at certain times. In 

order to ensure high data consistency on the mobile host and the backend means the availability 

of the system will be compromised. This is the situation that is described in the CAP theorem 

[18], [19], [20], [21]. Furthermore, there can be a cascading effect where an update applied to a 

data (or Web resources) can lead other Web resources to issue state changes. Thus, there is a 

need to push updated messages to the mobile client as they arrive on the proxy in real-time.  

Moreover, a mobile client needs to be able to handle the asynchronous state change 

messages and update its own services or resources. The identification of which mobile 

consumers/providers have the latest updates of a resource and which resources need to be 

updated can be unsuccessful due to network latency. As a result, the REST-WS providers cannot 

send updated replicas to the appropriate consumers if there is network loss. Additionally, race 
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conditions arise with read and write requests from the mobile clients. This situation arises when 

read and write requests are issued concurrently for the same REST Web resources on the proxy 

or Web server. 

Also, events such as connection of a mobile device, disconnection of a mobile device, 

and the resource state change; make synchronization of updates challenging. In most cases, 

clients register callbacks with proxies in order to identify who has the latest copy of an update 

but this becomes complex in composite web services (see appendix). 

1.3 Conclusion  

To address the challenges of network latency and Web resources state synchronization, 

our research is looking into building a lightweight middleware framework that supports the 

mobile hosts of REST Web services. Key issues in the development of the framework which will 

be discussed in the literature review to know the current state-of-the-art approaches towards 

addressing them are: 

 Transient connection 

 Consuming REST-WS on mobile devices  

 Caching and event handling in distributed systems 

 Middleware oriented approaches in distributed systems 

 Approaches and techniques for dealing with state changes in physically distributed systems  

The remaining sections of the thesis are structured as follows: Chapter 2 explores the 

related works within the mobile Web services domain. Chapter 3 presents our proposed mobile 

hosting architecture that addresses the challenges of latency and data synchronization. A 

prototypic application is implemented to test the feasibility of the proposed architecture and the 
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implementation details are described in Chapter 4. The evaluation of the implemented 

architecture is discussed in Chapter 5. Chapter 6 and Chapter 7 focus on the conclusion and 

future works respectively. 
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CHAPTER 2 

LITERATURE REVIEW 

In order to understand mobile platforms and which data formats can be efficiently consumed 

by mobile devices, this chapter focuses on Web services architecture and designs, and mobile 

REST Web services. Also, overcoming the problems of having unreliable data on mobile client 

nodes as a result of transient connectivity inspired our work to research on the CAP theorem. To 

further build a middleware platform that supports mobile hosts and providers of REST services, 

the following areas are studied in this thesis: cloud computing applications, middleware support 

for mobility, resource hosting on mobile clients and middleware, and service hosting and 

workflow on mobile clients.  

2.1 The CAP Theorem 

Web services running in distributed environments are expected to provide support for 

data Consistency, high system Availability, and Partition-tolerance to faults. However, Eric 

Brewer [18] in an invited talk in 2000, made an unproven proposition that; no distributed system 

can guarantee consistency, availability, and partition-tolerance at the same time. Brewer [18] 

again noted that two of the three requirements can be guaranteed simultaneously if one of the 

requirements can be traded-off [18], [19]. Gilbert et al. [19] used a formal model to prove 

Brewer’s conjecture into a theorem. Figure 2.1 illustrates the possible options in the CAP 

theorem. 
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Consistency and 
Partition Tolerance

No Availability

Availability and 
Partition Tolerance

No Consistency

Consistency and 
Availability

No Partition

What are my 

Options??? 

 

Figure 2.1: Options provided in the CAP theorem  

Consistency is the requirement which guarantees that hard state stored in a distributed 

system is seen the same at every node by clients [20]. Gilbert et al. [19] described consistency as 

“atomic” which means every system transaction is one and must be completed fully or not 

started at all.  

Availability ensures that when parts of the nodes in a distributed system become 

inaccessible as a result of failures, the other nodes should continue to operate [20]. It is important 

that intended responses are received for each request even if other parts of the system fail [22]. 

Gilbert et al. [19] report that systems tend to fail during peak performance, therefore making 

availability very difficult to achieve when it is needed most. Dean [23] also noted that though 

availability is very difficult to achieve due to unpredictability of system faults, it is still the most 

important requirement for any distributed system.  

Partition-tolerance is achieved when a distributed system is built to “allow arbitrarily loss 

of messages sent from one node to another” [19]. The current demand from Web services 

consumers makes it impractical to keep all data at one source. This is because when the source 

fails, it means the entire system becomes unavailable. Partition-tolerance therefore allows for 

system states to be kept in different locations. 
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In mobile distributed systems, the CAP theorem phenomenon exists. The intermittent loss 

of connectivity in wireless networks makes partition tolerance a given. Developers are therefore 

faced with the option to choose between consistency and availability. Browne [21] commented 

that the pair of guarantees normally preferred by users is availability and partition-tolerance 

while trading-off consistency. The quest to build scalable and reliable heterogeneous web 

services that can overcome the challenges of the CAP theorem led to the development of ACID 

[19] and BASE [22]. 

2.1.1 ACID 

ACID (Atomicity, Consistency, Isolation, and Durability) is a set of properties that 

developers follow to overcome mostly the issues of consistency and ensure reliability for 

distributed transactions [22]. Atomicity guarantees that transactions which will require a 

sequence of steps must be treated as one unit. If a part fails, then the entire transaction fails and 

the system must be restored to its original state [19]. Consistency property ensures that anytime a 

client sends a request to the database, it receives a valid and desirable data. According to 

Pritchett [22], “the database will be in a consistent state when the transaction begins and ends”. 

The data received will be viewed to be the same on all requesting nodes at the same time. 

Isolation ensures that a transaction being processed is hidden from other processes until it comes 

to completion [22]. Durability means after a successful transaction, the operation cannot be 

rolled back even if there are system failures [22]. 

Distributed systems normally rely on the two-phase commit protocol [22] to provide 

ACID capabilities. Pritchett [22] explains two-phase commit as follows - if all databases agree 

on an operation (i.e. precommit) to the coordinator, then the operation can continue with the 

coordinator in the second phase asking the operations to give their consent but if one database 
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reports failure, the entire system must be rolled back. This guarantees consistency in the 

distributed system. Since most systems are horizontally scaled, it means partition-tolerance is 

ensured which means systems cannot be available according to CAP theorem. Pritchett [22] also 

pointed out that because of the use of database keys, distributed transactions are highly coupled. 

It is also impractical to build long-lived transactions in ACID if it uses two-phase commit. 

Instead, some developers came up with the idea of breaking down a long-running transaction 

into smaller transactions; a developmental approach known as SAGAS [24], [25].  

2.1.2 SAGAS 

SAGAS is not an acronym but rather a term coined by Garcia-Molina et al. [25] that 

describes long running transactions. Long running transactions in a mobile distributed 

environment is impractical to follow ACID principles because ACID normally uses locks and 

serialization [24]. Young [24] explains SAGAS in his article that long-lived transactions can be 

divided into short-lived transactions with linkages known as compensation handlers. The 

individual short-lived transactions can have ACID properties but not the entire SAGAS. 

This approach is good for handling error in the system because unsuccessful short-lived 

transaction can be rolled back. SAGAS just like ACID also uses a controller to complete or 

terminate a transaction [24].     

2.1.3 BASE 

The developers who opt for the option of availability employ the Basically Available 

Soft-state Eventual consistency (BASE) model. BASE is used to minimize the level of coupling 

in ACID systems by ensuring availability over consistency [22], [26]. This process ignores two-

phase commit and ensures latency. However, eventual consistency is achieved if the system 

allows for a time lag between operations [22]. 
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Vogels [26] used the concept of replicas that can be achieved on hosts to configure the 

CAP theorem in distributed systems. Considering Nh hosts that store replicas, Nw successful 

writes to a replica, and Nr replicas that can be read from hosts, then Nh >= Nw + Nr ensures 

eventual consistency and partition tolerance within the distributed system. This means that 

outdated replicas can be seen on some hosts when a read operation is invoked. In cases where a 

host can also read from multiple replicas, it becomes difficult to “define a clear semantic about 

the return value” [27]. A proposed solution to overcome this challenge is the implementation of 

client-centric consistency [27]. This consistency model presents consistency of replica only in 

the view of a single client [27].  

Also, Vogels [26] described the eventual consistency approach as a form of weak 

consistency and mentioned factors such as delays in communication, the demand on the system, 

and the number of data replications that the system has to produce as basis for determining an 

inconsistency window. Key eventual consistency models that are discussed by Vogels [26] are 

reported below. 

 Causal consistency: This model assumes that if a replica is updated by a process X and duly 

notifies process Y about the update, then all read operations of Y should return the updated 

replica [26]. All write operations will equally override any existing write [26]. This is 

explained by Menascé et al. [28] that if:  

replica1 and replica2 are caches that contain resource A and B respectively; 

Process X => remove resource A and add resource C to replica1; 

Process Y => read replica1 and add resource D; 

Process Z => read replica2; 



13 

 

Then process X and Y have a causal relationship because process Y will see only resource C 

in replica1 and return the current state of replica1 to C, D. However, process Z is concurrent 

with both processes X and Y because they have no relationship. For a replica to be causally 

consistent, then the following condition must be met: “Writes that are potentially causally 

related must be seen by all processes in the same order. Concurrent writes may be seen in a 

different order on different machines” [28]. The difficulty in the implementation of this 

consistency model is how to identify which processes have causal relationships [27].  

 Read-your-writes consistency: This is a special case of causal consistency where after 

process X has updated a replica, durability is ensured where by the older version of the 

replica cannot be read again but only the updated version [26]. From the parameters used 

above to explain Vogel’s concept of replicas, if Nr + Nw > Nh, then read-your-writes 

consistency is guaranteed [29]. This consistency model directs read requests to only hosts 

that have updated replicas and all requests to hosts that are yet to update their replicas are 

not served [30].  

 Session consistency: Read-your-writes consistency is implemented to work only within a 

context of a session [26]. This is very practical because every session is guaranteed read-

your-write consistency but when a session fails, a new session has to be started with no 

guarantee of consistency from the previous session [26].  

Golding [31] proposes a weak-consistency architecture that employs session consistency 

and timestamps to propagate updates in wide-area systems. All processes send write request with 

a timestamp that is logged in storage. Each log, L, is a triple: L = {list of sender id, timestamp, 

message}. Each process also has a summary record of list of process id and timestamps in order 

to determine which updates they have read. This ensures that processes only have to exchange 
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session messages with each other that a partner process does not have. All processes also keep a 

second record that is described as acknowledgement storage. The list of process ids and 

timestamps are kept here in order to know which updates have been acknowledged by other 

partners. By this, the system ensures reliable synchronous message exchanges among 

components and enables replicas to be independent. All communications are logged by a partner 

replica within a group so the moment a disconnected replica reconnects, messages are delivered 

to it. Golding [31] also noted that the use of timestamps in message exchanges is good for 

message delivery orderings.  

2.1.4 Summary 

In distributed mobile networks, transactions cannot be guaranteed to follow the strict 

ACID module due to the asynchronous nature of passing messages between mobile clients in a 

Wi-Fi network [32]. This is because network latency and intermittent loss of connectivity can 

cause responses to requests to delay. The fact that ACID uses two-phase commit in distributed 

systems also makes it ineffective to build long-running mobile transactions since locking will be 

used [24].  

However, mobile transactions can be successfully deployed if ACID can be compromised 

[32]. BASE lends itself well into mobile web services because allowing for an inconsistency 

window can cause for eventual consistency in cases of network loss [22], [32]. Furthermore, 

BASE ensures high system availability in mobile heterogeneous web services even though the 

system will at a point register inconsistency in replicas [22], [26]. Also, the various eventual 

consistency models can be combined in a single implementation in order to achieve high 

scalability and fault-tolerance [26].  
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2.2 Web Services 

Web Services (WS) [3] are network oriented applications that serve information based on 

standards such as SOAP and REST.  WS can be deployed as XML standards when built on 

SOAP technology and are accessed through a URI (Universal Resource Identifier) address [33]. 

Also, the development of Web services with standards such as SOAP, WSDL, UDDI and XSD 

ensures data availability and access at real-time [3]. 

 

Figure 2.2: Web Services built on XML Structure [34] 

As shown in Figure 2.2 above, WS can be exchanged between a Web service client and 

Web service in the following scenario. 

1. The Directory is a location that stores XML based Web services using UDDI as a 

directory service [34]. 

2. URIs are used by the client to discover the XML based Web services [34]. 

3. The client uses Web Service Descriptions as a proxy to interpret what interactions the 

Web services support. There will be no communication if the XML Web services do not 

support the XML WS client needs [34]. 
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4. The wire format provides a global protocol support (e.g. SOAP) for XML WS to be 

communicated with by many platforms [34].  

Furthermore, Web services can be used to deploy business services and applications on 

many platforms since WS mostly use HTTP as a communication protocol [3]. Web services can 

be implemented with the following styles RPC, SOA and REST [3]. Pautasso et al. [9] compared 

WS-* which they described as “Big” Web Services, with RESTful Web Services. Their paper 

concluded that the best design architecture depends on the needs of the developer since they have 

different architectural designs. In another finding, Beal [4] in his article, “Understanding Web 

Services” reports that web services have shaped the paradigm of business communication 

between client and servers. Most organizations such as eBay, Amazon.com, and Social 

Networking sites such as Facebook use Web services to develop their API’s [34]. The underlying 

protocol on which Web services run ensures the implementation of WS on ubiquitous objects 

[34].  

Also, mobile Web services support the integration of various WS designs in mobile 

distributed systems. Farley et al. [35] identify mobile Web services as a way to deploy traditional 

Web services on the mobile device due to constraints such as screen size and the personalization 

of apps. Farley et al. also discuss a mobile Web services architecture that is easily consumable on 

multiple devices such as Personal Digital Assistants, laptops, mobile phones and tablets. The 

paper proposes a mobile Web services implementation that offers authentication services 

between the client and the web server. Users can access a map on their mobile devices from a 

map Web service provider. Mobile users can also share their personal profile contents with 

others.  
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As well, in mobile Web services, developers in the Mobile Computing field are not 

concerned with which particular Mobile Platform OS to choose since HTTP is platform 

independent [4]. To further understand which Web services framework best supports mobile 

devices, this thesis explores SOA and REST in the next sections.  

2.3 SOA 

The Service-Oriented Architecture (SOA) framework provides support to various 

components of Web services to interoperate. According to Wicks et al. [8], SOA focuses on 

reusability of software and integration. Another key thing about SOA is packaging, which makes 

changing of older versions of software very fast and at minimal cost [8], [36].  

PublishService registry

Service

WS Protocol

Lo
okup

Client

 

Figure 2.3: Service Oriented Architecture framework [10], [37] 

Figure 2.3 describes the software components that are modeled as services [37] in a SOA 

framework. The Service constituent is a platform (“service interface”) that is exposed to 

processing software that control a specific set of tasks [37]. The Client module discovers services 
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that are reusable and engages in a bi-directional message exchange via internet or intranet with 

the Service module. The client also uses UDDI and WSDL to discover services and produce 

SOAP messages [10]. The Service registry is a repository where service providers publish 

services.  

According to a project report on the practicality of the SOA framework, Rusu et al. [38] 

report on the performance of CardioNet; an E-health app for heart patients. It is a distributed 

system implemented using Service Oriented Architecture (SOA) where everything (i.e. 

hardware, software, and medical activities) is modeled as “services”. The system also uses the 

high level protocol SOAP. Rusu et al. report that CardioNet guarantees interoperability and 

permits heterogeneous systems’ integration.   

Though SOA aids Web services developers to overcome interoperability [9] problems, it 

has some limitations when implemented in mobile distributed systems. SOA is XML based since 

it uses SOAP; and this makes simple communication between system components in mobile 

distributed systems challenging. The difficulty is due to the fact that SOAP passes large XML 

data; thus the consumption of data becomes a problem on mobile clients which have limitations 

of processing and storage [10]. Another hurdle in the SOA framework is that, to achieve cross 

platform interoperability between Web services, a lot of standards have to be followed. Though 

standards such as security, integration and management have been projected for SOA, there is no 

common platform that integrates all the standards [36]. 

Also, Lee et al. [39] report on the challenges faced by Telco with issues on scalability due 

to earlier SOA design to build transactions. The paper, as well, identified a challenge of poor 

performance of the system under heavy workload. As a solution to address the challenges in 

SOA, they propose Resource Oriented Architecture (ROA) [39], [40] approach. 
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2.3.1 SOAP Based Web Services 

Simple Object Access Protocol (SOAP) is explained by Pautasso et al. [9] as a Web 

specification that provides interoperability for heterogeneous Web services. This is achievable 

because SOAP messages can be exchanged over multiple communication protocols using HTTP 

and other transport protocols. Also, the use of HTTP for transporting SOAP messages has 

reduced the challenge for building services that can run on the Internet according to Cartwright 

[41]. Though the standard protocol used by SOAP is HTTP, it can use other protocols as well. 

Figure 2.4 shows a complete cycle of a client-web server request-response interaction based on 

the SOAP framework. The client envelops a SOAP message with clear description and sends it 

over a network transport protocol as a request which is opened when received at the web server 

for an appropriate response. The web server also sends the SOAP response back to the client in a 

standardized format that the client can understand.    

 

Figure 2.4: SOAP based Web Service lifetime [42]  

A sample SOAP message is shown in Figure 2.5 where a client requests is sent to the 

server for the creation of a record for a patient with the name R. Kwadzo. 
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The application of SOAP technology is seen in the research of Uribarren et al. [13], 

Beltran et al. [14] and Halteren et al. [15] because of the flexibility offered by SOAP. The key 

challenge that these works address is building software applications that are platform 

independent. The authors use SOAP as the Web services mechanism and as a result, the client 

devices are able to consume the services.     

However there have been some challenges associated with the use of SOAP in 

heterogeneous Web services. Some developers describe SOAP as a complex way of design while 

others saw that the simple way of turning legacy applications (i.e. older versions but running 

application) into Web services can be misused [9], [43]. Furthermore, SOAP uses the HTTP 

POST method to send large messages therefore causes network traffic in mobile distributed 

environment [10]. As well, there are core memory problems that arise in mobile distributed 

systems with the use of SOAP because it’s a heavy protocol that sends and receive messages 

[10]. 

POST /NewPatient HTTP/1.1 

Host: www.soapws-example.net 

Content-Type: application/soap+xml; charset=”utf-8” 

Content-Length: 324 

 

<?xml version="1.0"?> 

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"> 

<soap:Header>    </soap:Header> 

<soap:Body> 

<m:NewPatientRecord xmlns:m="www.soapws-example.net/patient"> 

<m:PatientName>R. Kwadzo</m:PatientName> 

</m: NewPatientRecord> 

</soap:Body> 

</soap:Envelope> 

 

Figure 2.5: Sample SOAP request message 
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2.3.2 WSDL 

Web Service Description Language (WSDL) is an XML based standard that formally 

describes a Web Service (WS) [8]. WSDL describes the transactions of Web services by looking 

at the messages used by the Web service, the data types, and the communication protocols [8].  

WSDL provides a standard for describing services that are offered in electronic 

transactions, provides business services functionalities, and provides a data in a suitable format 

for Web based client consumers [3], [34].  

2.3.3 Summary 

The works presented on SOA show that Web services can be modeled and consumed as 

services in distributed systems. Since SOAP uses HTTP as a communication protocol and 

WSDL to give interpretation to web services in a client-server interaction, SOA Web services are 

interoperable, platform-independent, and reusable. 

However SOAP messages are large so consuming them on mobile clients is difficult due 

to the memory and CPU constraints on the mobile devices. The exchange of these large XML 

data also increases bandwidth usage. As a solution to these challenges, the works presented by 

Wang [10] and Lee et al. [39] employed the ROA and REST designs. 

In the next section, the current studies on ROA and REST are investigated to determine 

how they are being applied in modern WS designs.  

2.4 REST 

2.4.1 REST Architecture 

REpresentational State Transfer (REST) is a term coined by Roy Fielding [11], in his 

Ph.D. dissertation, “Architectural Styles and the Design of Network-based Software 
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Architectures”, as architectural principles that use the Web platform for distributed computing. 

REST is better understood in the context of identifying everything as a resource, representation, 

and state [44]. The design follows certain technological principles: 

I. Everything is a resource: In REST design, all the identifiable entities must be considered as 

a resource and should be assigned an ID [45]. 

II. Identification of resources through URI: The key resources should be given Universal 

Resource Identifiers (URIs) which will facilitate interactions within the system. The URIs 

provide a global namespace for resource and service identification [9], [45]. Figure 2.6 lists 

sample legal URIs that can be used in identifying resources. 

 

 

 

 

 

III. Uniform interface: Resources can be manipulated through representations using HTTP 

methods.  The following HTTP methods are noted in [11], [45]. 

 GET: This method is used for resource retrieval.  

 HEAD: This method’s request-response is similar to GET request but the requesting 

resource only receives the response headers without the entire message body.  

 POST: This method is invoked to push or create a new resource.  

 PUT: This method alters (update) the state of a resource.  

 DELETE: The DELETE method is used for removing the specified resource. 

Figure 2.6: Sample REST URIs 

 

http://restfulwstest.com/patients/2011/1 

http://restfulwstest.com/patientlist?age=60 

http://restfulwstest.com/patients/1234 

http://restfulwstest.com/patients/sickness-234 
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  PATCH: This method is used to update parts of a resource without changing the state of 

the entire resource.  

 OPTIONS: This method checks and returns the functions of a web server [45]. 

There are other HTTP methods as well such as TRACE and CONNECT. The use of the 

verbs must be controlled by the developers because while some are idempotent and safe, others 

are not [45]. Idempotent methods have the same state effect on a resource when invoked once or 

multiple times. Examples are GET, HEAD, DELETE, OPTIONS and TRACE methods. Safe 

methods have absolutely no state changes when invoked on a resource. Examples are GET and 

HEAD methods. The POST method is neither idempotent nor safe [45].  

IV. Self-descriptive messages: Since resources are decoupled from their representation, it makes 

content accessibility very simple regardless of the format of resource content [9]. The 

available meta-data of the resources can be used to control caching, detect transmission 

failures, and enforce data security measures [9].  

V. Stateless interactions: While resources have states, their interactions should be kept 

stateless. At the end of every transaction, resources should have information about 

themselves but not how the last interaction was done [45].  

VI. Hypermedia as the engine of application state (HATEOAS): In order to navigate between 

resources, URIs such as hypertext can be used in a resource representation [46]. HATEOAS 

aids the client to know the next steps to take since the returned URI contains links to 

available options.  

2.4.2 WADL 

Web Application Description Language (WADL) is an XML document that defines the 

implementation of RESTful Web services [47]. WADL also uses HTTP as a communication 
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protocol. Burke [47] described WADL as the WSDL of RESTful Web services. Burke built a 

JAX-RS application using Jersey; and WADL is used to define the resources as well as the 

HTTP methods and the resource states. 

WADL requires machine input for HTTP based web apps. The machine readable parts of 

web apps can be a set of resources, links between resource components, the HTTP uniform 

interfaces, and the representation of resources [48]. 

2.4.3 RESTful Web Services 

RESTful Web Service (REST-WS) is a Web service framework that is built on the 

architectural principles of REST and communicates over HTTP [12]. In “Richardson Maturity 

Model: steps toward the glory of REST” [49], four levels of abstraction for creating Web services 

in REST are noted as reproduced in Figure 2.7.  

 

Figure 2.7: Levels in REST design [49] 
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 Level 0: This level is the lowest level in the RESTful design hierarchy. The design at this 

level describes the use of Plain Old XML (POX) to create simple request-response to a 

single endpoint over HTTP.  

 Level 1: This level is one step above Level 0. The Level 1 design focuses on building 

resources that can interact individually in a 1 to N relationship. In this way, the traditional 

way of interacting with a single service endpoint in Level 0 is improved. Also, the HTTP 

methods employed at the Level 1 are GET and POST.  

 Level 2: Designing RESTful Web services at this level encompasses all the Level 1 

requirements in addition to all the other HTTP methods for most of the interactions. Level 2 

supports the Create, Read, Update, and Delete (CRUD) methods. Also, the methods at this 

point are consumed by HTTP itself to determine safe operations.  

  Level 3: RESTful Web services at Level 3 combine the requirements of Level 2 and uses 

hypermedia controls for making protocols more transparent in a global namespace. At level 

3, the client requests are responded to with additional URIs that informs the client of the 

next steps to take.  

Additionally, there are developers who strictly adhere to the use of the CRUD methods 

and hypermedia controls. These developers are described as “purists” [50]. However, there are 

developmental needs which may demand the use of POX with another method such as POST to 

create, update and delete a resource. The developers who opt for the Level 0 and Level 1 are 

classified as “pragmatist” [50]. Lee et al. [39] and Selonen et al. [51] in their research use the 

terms low-REST and lightweight REST respectively to describe the pragmatists view. In Figure 

2.8, the opinions of the purists who use Hi-REST and the pragmatists who use Low-REST are 

illustrated.   
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Figure 2.8: Views on REST [50] 

3.4.4 Mobile RESTful Web Services 

RESTful Web services provide a more efficient architecture that enables mobile clients to 

communicate with the server through proxies [12]. This is because the provision of stateless 

interaction in REST reduces the impact of network volatility in mobile distributed systems [12]. 

Also, REST uses URIs so Web services apps can easily be invoked from mobile clients; and 

since responses are transmitted over HTTP, the effect of network instability is reduced [12]. 

In order to make use of the flexibility provided by REST-WS, Selonen et al. [51] reported 

their findings on building mixed reality service on a mobile device. The paper adopted REST as 

an architectural style in order to achieve interoperability, decoupling, scalability and security. A 

service model is proposed which is later changed to resource model using Unified Modeling 

Language (UML) class diagrams and the final implementation done as a lightweight method of 

REST. The paper proposed a functional requirement that integrate client (mobile) and server 

interaction. Photos are sent from a smartphone with meta-data and stored in a registry on the 

server that is accessible by other clients and 3rd party applications using URIs. This approach, 

Selonen et al. [51] noted, aided their system to render services on multiple mobile clients and 

web browsers. Selonen et al. [51] use Web Application Description Language (WADL) based on 
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Java EE-Hibernate- Restlets which helped them to use uniform interface and define resource 

states.  

Another research that explores mobile RESTful web services was conducted by Stirbu 

[52]. The paper aims at building an adaptive and multi-device application sharing service that 

gives the same look and feel of applications deployed on different mobile platforms. Stirbu [52] 

implemented an event-based RESTful architecture that efficiently consumes web services on the 

mobile device. Since resources contain self-descriptive messages, interactions between them are 

converted to events which are controlled remotely to deliver contents with the same functionality 

on different systems. This work employs the ARRESTED [52], [53] architecture as a means of 

overcoming the well-known challenge of REST where the client is usually the one that initiates 

conversation with the server. Using WADL, synchronization between client and application host 

is achieved since any of them can initiate conversation in a request response pattern. Stirbu [52] 

observed that using REST aids his system to scale with multiple users and devices.  

According to Sletten [54], combining RESTful design with other technologies like 

caching provides great system scalability. Figure 2.9 shows Sletten’s graphical presentation of 

how the combination of REST and caching can provide a flexible and scalable architecture. 

 

Figure 3.9: Caching in REST [54]  
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On the weaknesses of REST, Stirbu [52] highlighted some limitations imposed on the 

system at the network level which has to do with response request. Furthermore, Han et al. [55] 

argue that many firewalls permit only the GET and POST methods. There is also a size limit on 

URI for GET method encoding [55]. Also, HTTPS requests are not cacheable due to security 

concerns [55].  

2.4.5 Computational REST (CREST) 

Although the REST architectural pattern helps in achieving the dream of a scalable web 

based systems, Erenkrantz et al. [56] observed that REST does not focus on the architecture of 

individual components of the distributed system. The authors after exploring the best ways of 

building RESTful web applications and how future web services could fit into the REST 

paradigm, propose CREST as a way of expanding the current REST architecture. Figure 2.10 

above shows a sample code for CREST in JavaScript. 

 

 

 

 

The importance of shifting to CREST is because many current web communications 

involve computational results rather than contents [56]. Instead of receiving data as content or a 

hyperlink for consumption by the client from a request-response interaction, data is received in a 

form of computation(s). These computations determine what actions the client needs to take next 

after the execution of the current computations. Erenkrantz et al. [56] use closures and 

{ 
if (wordcount) { 
    return wordcount(GET( 
        “http://www.example.com/”)); 

               } 
 
 } 
 

Figure 2.10: Sample CREST program in JavaScript [57] 
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continuations in JavaScript to build a computation based web service that exchanges messages 

between the client and server. URIs in this environment are recognized as computational 

resources and all interactions are treated as computational exchanges. The main design principles 

of CREST are outlined by Erenkrantz et al. [56], [57] as follows: 

I. URL defined resources are modeled as computations: All entities that have a legal URI are 

computations and as such can be described as resources. Examples include images, orders, 

generated services, and simulation of an object. 

II. The representation of a computation is the collection of an expression and metadata to 

describe the expression: Assuming resources are represented in a particular data format; 

plus a metadata to describe those formats, then there is a linkage between the abstract 

resource and its actual representation. In that case, In CREST, it is easy to negotiate for a 

representation. 

III. All computations are stateless (context-free): CREST just like REST keeps the state of 

resources but the interactions are kept stateless. Each computation contains enough 

information that determines what actions to take next without knowing anything about the 

preceding computation. 

IV. Only a few primitive operations are always available, but additional per-resource and per-

computation operations are also encouraged: Representations are defined by participants 

based on their specific binding environments. That is, there are limited HTTP operations that 

are supported in CREST but the developer can define more operations on the server side and 

expose the operations globally to all clients.  



30 

 

V. The presence of intermediaries is promoted: There is transparency between the client and 

server so all modifications made to a representation in a request-response interaction is seen 

by all. 

Additionally, apart from the above mentioned design principles governing CREST, there 

are certain principles that CREST focuses on according to Erenkrantz et al. [56], [57]. These 

principles are outlined below: 

I. Computational Namespaces: CREST uses URIs as computational representations to make 

non-human readable expressions that can be stored on nodes for later message exchanges. 

II. Services: CREST allows multiple URLs to access a single service. This is why CREST 

supports multiple interfaces. 

III. Time: Computations in CREST may evolve over time based on a user’s computational 

loads. In view of this, when multiple computations are being processed within the system, 

CPU consumption may increase.  

IV. State: Multiple computations can be spawned simultaneously. 

V. Computation: CREST references an object directly or indirectly using computational 

representations. 

VI. Transparency: Because URLs are made available within computational namespaces, 

caching, routing, and inspection of computations can be achieved easily. 

VII. Migration and Latency: Computations can be moved and stored on to multiple nodes 

thereby reducing the overhead of computation.  

Also, CREST design does not necessarily have to follow all the above outlined 

principles. The design guideline of the CREST framework is tested by Erenkrantz et al. [57]. In 

the research, a sample Feed Reader Application is implemented to test CREST based on all of its 
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principles. The application consumes RSS feeds based on computations. The client JavaScript 

provides users with a graphical interface that allows users to create links to widgets, select URL 

and choose a date from calendar. The widget manager serializes all the user’s preferences 

together as JSON and passes it over HTTP to the backend. Closure and continuation are used to 

render the requirements of the user in a browser as an atom feeds.  

2.4.6 ROA 

The Resource Oriented Architecture (ROA) presented by Overdick [40] follows the 

guidelines of REST. The ROA design is employed by Xu et al. [58] who used the Web services 

framework for JAVA called RESTlets to build a ROA system. A comparison of the result of the 

ROA system was made with service-based web services. The ROA system proved to be a more 

flexible approach to building business processes because of the use of hyperlinks that enable 

processes to communicate. The use of a uniform interface (HTTP method) exposes resources to 

be managed more easily than in SOA where service components have to be created at every 

operation. Xu et al. [58] also proved that ROA business processes allow process visibility. This 

is good especially in the sense that the client requester can communicate with the server 

periodically for updates.    

Also, Selonen et al. [51] report on building a lightweight architecture style for building 

ROA as a solution to their “mixed reality” project. This aided them to achieve the aim of storing, 

retrieving, and managing interlinked content which otherwise couldn’t be successful with SOA.  

For the purpose of analyzing the importance of ROA and SOA, the two are compared in 

Table 2.1.  
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Table 2.1: Comparing ROA with SOA 

Objects (Entities) 

 In ROA, entities are modeled as resources but in SOA they 

are services. 

Increased 

Adaptability 

 ROA implementation is more adaptable than SOA [39], 

[58]. 

Scalability 

 Lee et al. [39] and Selonen et al. [51] report that ROA is 

more scalable than SOA. 

System 

Performance 

 ROA design handles bigger workload than SOA [39]. 

Interoperability 

 Pautasso et al. [9] view interoperability as the major strength 

of SOA but [58] and [51] report otherwise. 

Decoupling 
 ROA is better than SOA [51]. 

2.4.7 Summary 

The works in REST show that it is a light-weight protocol that provides consumable Web 

services to resource constraint devices such as smartphones and tablets. The REST architecture 

provides the platform for resources to be cached anywhere in mobile distributed systems [50]. 

Additionally, the use of REST is good for bandwidth management [10]. 

Though REST has certain problems like no caching for POST request, it is still a better 

alternative to SOA. Other challenges such as the client being the initializer of a client-server 

interaction can also be overcome with CREST. 

2.5 Cloud Computing 

In order to maximize the full functionalities that smartphones and tablets provide its 

users, cloud computing is reviewed. In the work “Using RESTful Web-Services and Cloud 
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Computing to Create Next Generation Mobile Applications,” Christensen [12] focuses on the 

network capabilities of smartphones by linking context-enable features on these devices to cloud 

computing. Smartphones, unlike desktop computers, are constraint with storage space and 

memory allocations. Hence, exploring the power of cloud computing aided Christensen to store 

some application features and data in the cloud. Since mobile devices have connections either 

through Wi-Fi or Bluetooth, data in the cloud can be accessed at real-time. Figure 2.11 shows 

how the cloud can be used as a platform, as a service, as an infrastructure, and as a storage. 

 

Figure 3.11: Cloud computing model [59] 

Additionally, Christensen [12] mentioned the convenience of building Web services 

RESTful for smartphones since REST requires passing simple XML. REST allows the use of 

HTTP HEAD operation which enables efficient caching on the smart mobile device.  Christensen 

[12] also reports on how the combination of smart mobile phone, REST based cloud computing 

and context enablement transformed the mobile application paradigm to activity based service. 

Furthermore, the ability to choose between Open ID and Open Auth provides cloud security. 
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In another research, Wang [10] shows that the cloud provides a stable network 

environment for data accessibility. As a result, network availability and reliability is highly 

guaranteed in the cloud. Wang [10] also reports that the server hosted in the cloud is scalable as 

the workload increases with good performance.  

With the cloud providing high platform availability, the attention of this thesis switched 

to the middleware proxies and how mobility can be supported in mobile cloud environment. 

2.6 Middleware Proxies 

In an attempt to understand how current research in the mobile computing field has 

addressed latency and data sharing issues, middleware applications are reviewed. Middleware is 

explained as software that “enables applications to interoperate with each other, enabling them to 

form and present different views of, and ways of accessing, functionality and data from and 

across each other’s systems, regardless of their native platform or operating system.” [60] 

Uribarren et al. [13] outline some issues they faced with building location adaptive and 

multiple platform application for ubiquitous objects in a distributed environment. The challenge 

that the paper attempted to solve is how to implement a system that automatically adapts to 

contextual information based on a user’s usage preference and available network support. Other 

challenges were how to build a cross-platform system that can render platform-specific 

information on a desired client, and support for multiple data formats. Uribarren et al. [13] 

propose a middleware infrastructure that stores a user’s location, a user’s device and his/her 

current activities online. Whenever a user changes location, the middleware stores the new 

location and pushes the previous online activities to the user. This scenario makes it possible for 

users to access data on multiple nodes since the data is on the middleware. The middleware 
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accepts data in XML format so it is easy to pass it into other formats that can be consumed by 

other ubiquitous objects. 

  Also, Beltran et al. [14] use middleware oriented approach to deal with the issues of 

presence status of users in mobile services environment. Understanding the presence status such 

as offline, available, busy, and so on of an online user enables user applications to adapt to what 

information they can deliver to the client. Beltran et al. [14] propose a personal proxy 

middleware that ensures presence for adaptable client action based on the information from the 

proxy. The wired environment proxy enables presence states to be stored and managed on the 

middleware and the client only connects using an API. This approach aids the efficient use of 

resource constraint devices because the processing is done by the middleware. The middleware 

approach adopted by Beltran et al. [14] also help the system to be highly secured because each 

client is shielded from any other client since all communications are routed through the 

middleware proxy. 

Halteren et al. [15] further explore the use of middleware in order to achieve reliable 

client and service interaction, system scalability, and reduce the processing requirement on the 

mobile devices. The middleware identifies the client services through HTTP connection and 

executes all the processes and pass the processed information back to the client. The wired 

network middleware enables the proxy to facilitate reliable message delivery. The proxy is tested 

in an e-Health domain and patient data is successfully sent from censors to doctors in other 

locations.  
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2.7 Mobility 

2.7.1 Middleware Caching 

Most of the literature on middleware use caching as a way of manipulating resources. 

Halteran et al. [15] use middleware caching as a way of reducing client side workload on the 

mobile device. As well, the research by Alarcón et al. [61] uses middleware caching to store 

executable applications that are exposed to mobile clients. In case a client wants to use an app, it 

searches through the middleware cache to check whether it exists. All existing apps in the 

middleware storage are then uploaded to the client. Alarcón et al. [61] concluded that this is an 

efficient way of reducing the processing demand and reducing memory usage on the resource 

constraint client. 

Furthermore, Beltran et al. [14] use middleware storage to keep the user status (presence) 

in mobile presence service. The large amount of information regarding user presence that has to 

be processed for real-time delivery is processed on the middleware and current user status is 

stored. This allows mobile consumers to receive quick updates in the proposed distributed 

system.    

2.7.2 Mobile Client caching 

Sumari et al. [62] report on the use of mobile caching to store segments of videos in 

mobile video on demand systems. Due to limited bandwidth in Mobile Ad hoc Network 

(MANET), mobile clients have to wait for a long time before the video content is delivered to 

them. Sumari et al. [62] propose neighbor-based caching module, which is a system that allows 

mobile clients to contact other mobile clients and request for video segments from their cache. 

This approach coupled with middleware routing of video from client to client reduced the 

waiting time within MANET significantly. 
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Also, Gomaa et al. [63] explore the design of mobile caching policies and management. 

The paper as well as other works by Wang [10] and Sumari et al. [62] concludes that mobile 

caching reduces the impact on the volatile network bandwidth in the wireless environment. This 

is because mobile caching minimizes the number of requests in a client-server communication. 

Gomaa et al. also propose Least Frequently Used (LFU) caching as the best caching policy. The 

LFU is a cache validation methodology that is employed to remove data that is not regularly 

accessed in the cache. 

Furthermore, the mobility of handheld device users outside a Wi-Fi or WLAN 

environment is another motivation for mobile caching. Users can still access local copies of 

media even if there is no connectivity though the media may be outdated [10], [63].  

2.7.3 Mobile Service Hosting and Workflows 

Mobile devices are evolving from client consumers to client service providers due to their 

sophistication in recent time. Pajunen et al. [64] propose application and services execution 

workflow module on mobile devices. The authors define a mobile workflow that can run in the 

absence of network oriented processes or services. The workflow also provides an easy 

integration system in case the network services become available. The authors also note that 

“one can start to expect mobile devices to be more than just interfaces to services in the network, 

but they can execute and offer services by themselves”. Using Web services, Pajunen et al. [64] 

support their claim with the implementation of a workflow system that allows a supervisor to 

assign duties to a supervisee. A supervisee on his mobile device can take a decision by accepting 

a duty or rejecting it. Whatever decision is made by the supervisee will determine the next action 

that a manager can take. This implementation aids users to assign roles and receive feedbacks 

remotely. 
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Also, Rosenberg et al. [65] propose a RESTful Web service workflow that combines the 

principles of REST. The architecture proposed by the paper achieves simple human-computer 

interaction, collaboration services with external applications, and easy interfacing with back-end 

services. The implemented application called Bite, models all processes as resources and uses 

HTTP verbs to create, fetch, and remove process instances. This has led to a collaborative 

workflow between different client devices that want to share different processes. 

2.8 Event Handling and State Change Propagation 

2.8.1 Middleware Event Support 

Pritchett [22] proposes the use of an event-driven architecture as a simple means of 

determining consistency of resources that are stored on multiple hosts in a distributed system. 

The event notification mechanism informs clients about updates that have arrived within the 

system. The use of notification events between system components enabled the client or server to 

take an action based on the state of resources. The components in the distributed system also rely 

on event mechanisms to determine whether a particular host is dead or alive. 

Also, Sheng et al. [16] report on building a personalization app on a mobile device that 

takes into account a user’s location and a user’s service needs. The challenges faced with 

building the application were the constraints of mobile devices and how updates were sent to 

users based on their (users) needs in a wireless network. Sheng et al. [16] use event notifications 

that monitor updates to event sources. There are events that listen to incoming requests from all 

subscribers and based on the user’s location, another event is fired up that pushes the user 

subscription messages to the mobile client. By this approach, they successfully had a system that 

rendered personalized data and context-aware data to the client. 
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In addition, Da Rocha et al. [66] propose an event based middleware approach for 

deploying ubiquitous context-aware application that achieves application transparency in a 

scalable distributed system. The paper explores publish/subscribe mechanism to manage events 

such as asynchronous communications and rendering personalized information to consumers. 

Subscribers use an API to register for the contextual events they want to receive. The event 

handler at each service host is tasked with delivering contextualize information to the registered 

consumer. The paper concludes that this approach enhances real-time delivery of information to 

the consumer. 

2.8.2 Client Event Handling in RESTful WS 

An event-driven messaging architecture has been proposed by Li et al. [67] in RESTful 

web services that aid client consumers to receive message updates from the server. The events 

are: the client can register to receive a message from another client, the client can accept or reject 

a message, and the client can cancel a registration. All incoming messages have associated 

events that the client uses to determine its action. This style of event implementation ensures that 

messages and events are sent to only the intended recipients. This approach is different from the 

bi-directional two-way messaging system where messages are pushed to the client even if the 

client has not requested for it.  

In another research, Stirbu [52] proposes a mobile distributed system that allows sharing 

a RESTful WS application on adaptive and multiple hosts based on event-driven mechanism. 

The focus of his research was to render a single app on many devices with the same look and feel 

in device-aware context. Stirbu [52] modeled user interfaces as resources so each HTTP GET 

operation permitted a client consumer to acquire a resource state that was platform specific to the 

client. The HTTP operations GET, POST and PUT are all events. Anytime POST or PUT is 
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invoked, a corresponding update event is triggered that causes a remote Model-View-Controller, 

which is implemented, to model the updated resources for specific platforms. 

2.9 Conclusion 

Consuming WS on resource constraint devices and efficient bandwidth management: The 

background works show that Web Services (WS) can be built and deployed on many platforms. 

Also, WS can be built using SOA but REST-WS are consumed by resource constrained devices 

efficiently because REST passes simple data as compared to SOAP [10], [12]. REST also 

provides high system scalability due to its stateless interaction technique. Most of the related 

work compromise on some of the REST requirements in order to achieve their desired results. 

These types of REST systems are described as low-REST or lightweight-REST [39], [50], [51]. 

As well, in the REST design framework, resources are cacheable on the client. 

In addition, cloud computing is used for storage of applications that can be consumed by 

smartphones and tablets via Wi-Fi. This approach is to reduce the workload on the limited 

resources of these devices [10], [12]. 

Network latency between the client devices and the middleware: The literature review 

also focuses on how to deal with transient connectivity issues between the mobile client and the 

Web server. Some researchers propose middleware systems that store resource states for real-

time access by users [10], [14]. The middleware, which act as proxies, provide push techniques 

to clients so that updates can be received in a networked environment in real time. Another 

approach to dealing with latency issues in a wide-area system is implementing multiple servers 

and enabling clients that are closest to a server to establish communication [31].  

Caching: Resource storage on the client is possible when Web services are developed in 

REST. Client caching is good to push data to the user even if there is loss in connectivity 
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between the client and server [62], [63]. Moreover, resources can also be cached in the 

middleware. Middleware storage facilitates resource routing and sharing to hosts in a mobile 

distributed environment [14], [15]. Mobile clients can be modeled as resource consumers and 

service providers. In this case, caching and process execution workflows can be implemented on 

the mobile client to efficiently provide services to users and also manage the constraints on the 

mobile devices. 

Middleware and state propagation: The CAP theorem phenomenon exists in mobile 

distributed systems. Most of the related literature explained it in the context of databases but it is 

also applicable in mobile distributed environments that consume heterogeneous Web services 

[26]. As resource states are stored on client devices in an unstable Wi-Fi network, there will be 

partition failure due to the intermittent loss of connectivity. A middleware implementation is 

used to leverage the workload on the client and provide an interface barrier for client-server 

interaction [13], [14], [15]. The middleware responds to state change issues and accordingly 

notifies the clients. Golding [31] proposes the use of timestamps to requests as a way of knowing 

the order in which clients can be updated.  

Events: Event notifications can be used on the middleware to ensure consistency in data 

and monitor state changes in resources [22]. Clients can register for specific events whiles 

proxies can use events to determine client states [16], [22], [52], [66], [67].   

The list of papers reviewed within the identified problem areas are listed below in Table 

2.2. 
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Table 2.2: List of reviewed papers within the project domain 

Web Services 

 Beal [4] explained that Web services foster high integration 

and are mostly platform independent. 

 Web services technology supports multiple styles such as 

RPC, SOA, and REST [3]. 

 Mobile Web services provide resource sharing capabilities on 

resource constraint devices [35]. 

SOAP 

 SOAP is platform independent [41]. 

 SOAP supports language-independence [41]. 

 Han et al. [55] report that SOAP encourages protocol 

transparency. 

 SOAP is a complex way of design and the simple way of 

turning legacy applications into Web services can be misused 

[9], [43]. 

REST 

 Martin Fowler [49] explained the four levels of the 

Richardson Maturity Model. 

 Rodriguez [11] covered the basics of REST and its underlying 

principles. 

 Adamczyk et al. [68] explain the principles of REST and how 

it applies to enterprise apps and caching. 



43 

 

 Alarcón et al. [61] report on REST services application to 

some social networking sites. 

 Hadley et al. [46] report on the application of HATEOAS. 

 Parastatidis et al. [69] wrote on how to expose RESTful 

protocols in business workflow environment over the Web. 

 Kelly et al. [70] worked on REST and caching. 

 Engelke et al. [71] report on how to use REST design to 

modify existing applications. 

 The rationale behind the use of REST beyond the WWW 

infrastructure is explained by Fernandez et al. [72]. 

 The applicability of REST in distributed web environment is 

the focus of the work of Hernández et al. [73]. 

 Jacobi et al. [74] report on the use of REST as a way of 

reducing bandwidth consumption in messaging. 

RESTful Mobile 

Clients 

 Tilkov [45] writes that the stateless interactions between 

resources in a RESTful design, results in high system 

scalability.   

 Christensen [12] reports that REST is desirable in mobile 

environment because it reduces the impact on network usage. 

 Selonen et al. [51] justify the use of low-REST style in their 

work in order to achieve interoperability, decoupling, 
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scalability and security.  

 Stirbu [52] reports that the use of REST style in his work 

helped to deploy content with same functionality on different 

systems. 

 At the network level, there can be limitations with the request-

response interactions [52]. 

Computational 

REST 

 Erenkrantz et al. [56], [57] mentioned that CREST Web 

applications are highly consumed by mobile clients.  

 CREST also focuses on computations rather than hyperlinks 

[56], [57]. 

Cloud 

Computing 

 Christensen [12] reports on using cloud infrastructure as 

storage in order to efficiently manage the constraints on 

mobile devices. 

 Wang [10] also reports from his research findings that the 

cloud environment provides system availability. 

CAP Theorem 

 Two of the three requirements (Consistency, Availability and 

Partition-tolerance) can be guaranteed simultaneously if one 

requirement can be traded-off [18], [19], [20], [21]. 

ACID 

 Atomicity, Consistency, Isolation, Durability 

 ACID is a set of properties that is followed to ensure high data 

consistency [22].  
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 Transactions are atomic thus should be successful or fail 

entirely [19], [22]. 

SAGAS 

 SAGAS avoid locks and serializations in long running 

transactions [24].  

 Long-lived transactions can be divided into short-lived 

transactions with linkages known as compensation handlers 

[24]. 

BASE 

 Basically Available Soft-state Eventual consistency (BASE) 

ensures high availability [22]. 

 Ignores two-phase commit and ensures latency. 

 Eventual consistency is achieved if the system allows for a 

time lag between operations [22]. 

Middleware  

 Uribarren et al. [13] propose middleware for transforming data 

into a format that is consumable by ubiquitous devices. 

 Beltran et al. [14] use middleware to provide user presence 

services in mobile environment. 

 Halteren et al. [15] propose the implementation of middleware 

to ensure high scalability reliable message delivery in 

distributed systems. 

Resource 

Caching 

 Caching is possible on the middleware side in order to reduce 

the processing workload on the client [14], [15]. 
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 Client caching is beneficial for providing resources to users 

and other clients in an unavailable network environment [62], 

[63]. 

Event Handling 

 Pritchett [22] uses event notification to ensure resource 

consistency. 

 Sheng et al. [16] use update notification events to monitor 

state changes of services. 

 Events can be implemented following the publish/subscribe 

technique [66]. 

 Clients can also register and manage events in a distributed 

system [52], [67]. 

Mobile Service 

Hosting and 

Workflows 

 The mobile device can be a service provider as well as 

consumer [64]. 

 Workflows enable the mobile device to execute business logic 

and transactional services in a distributed environment [64], 

[65]. 
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2.10 The Open Issues 

In this thesis, the following unresolved issues in the problem definition have been 

identified. 

 Network Latency: There is network latency within Wi-Fi environment due to transient 

connectivity. Short-lived disconnections can be hidden from client nodes and users by 

pushing cached data to them (i.e. ensuring distribution transparency); but this is not practical 

in long-lived disconnections. This therefore leads to the following open question: 

o How to model the mobile device as a resource and service provider that supports 

users at soft real-time? 

 State Synchronization: Messages sent to nodes within mobile distributed systems can be 

lost due to the intermittent disconnections in mobile wireless networks. Hence, messages are 

sent frequently to all mobile nodes but this approach introduces a lot of overheads. The 

following challenges therefore remain: 

o How to minimize overhead? 

o How to identify which consumers and providers have the latest updates of a resource 

and which resources must be updated?  

o Which eventual consistency model is the best approach for reliable update 

propagation? 
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CHAPTER 3 

DESIGN AND ARCHITECTURE 

3.1 Overview  

The objective of this thesis is to explore the capabilities of mobile devices as hosts of 

providers of RESTful Web services. To achieve this goal, a middleware is proposed to support 

the interactivity among the mobile devices in an unreliable Wi-Fi environment. The architectural 

design is classified into three tiers namely: mobile service requesters, middleware, and mobile 

service providers. Figure 3.1 highlights how the three tiers are linked.  The middleware is hosted 

on the cloud; identical to Wang’s work on “Mobile Cloud Computing” [10]. 

Mobile service requester

Cloud Infrastructure

Middleware

Resource state change detection 
Routing
Events detection
Caching

Mobile service providers

Requester

Provider 2

Provider 1

R

R

Create REST-WS

Events
Resource Hosting

Pushing
Polling

R

 

Figure 3.1: The proposed architectural design 

To address the challenges of network latency and resource state synchronization as 

described in Chapter 1, the proposed architecture extended on some earlier research. The 

architecture combines techniques such as caching, cloud-hosted middleware, and REST - based 
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on the research by Wang [10], Beltran et al. [14] and Golding [31]. The middleware employs 

event notifications following the publish/subscribe model that is proposed by da Rocha et al. [66] 

to inform registered mobile participants of resources state changes.  

The architecture also addresses the issue of resources state synchronization by means of 

the read-your-writes consistency mechanism (described in Section 2.1.3). By this model, all the 

write requests of a mobile provider will be visible to both the mobile provider and other 

participants on the next read request. In addition, the identification of which mobile service 

providers/requesters have the latest updates of a resource can be traced from the middleware’s 

registry. Thus, the mobile participants that must be updated can make read requests to the mobile 

provider who has the latest update of a resource. 
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Figure 3.2: Resource replication 

As illustrated in Figure 3.2, there are times when some resources, labeled R, are outside 

the cloud or they might be in the cloud but they are unreachable due to high latency. Thus, the 

architecture employs a resources replication technique. The resources on the mobile providers 

are replicated on the middleware; and the replicas are identical but they exist independently of 

each other. The replication approach is good for minimizing latency because the designed 

middleware responds to client requests faster. Furthermore, the replication technique is important 
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for ensuring high availability of the RESTful Web resources since the connectivity of the mobile 

providers cannot be guaranteed in the Wi-Fi network.  In case a particular mobile provider is 

unreachable, the requester can contact the middleware and request for that provider’s resources. 

As a result, the middleware also acts as a back-up for the mobile providers. 

Also, the communications between the mobile service requesters are directed through the 

middleware; which shields all activities of the mobile service providers. In order to keep 

resources state updated for real-time delivery of service to the mobile requester, the mobile 

provider uses a long-polling technique to fetch updates from the middleware. With long-polling, 

when a client sends a request to the middleware for an update, the middleware waits for an 

update to arrive in case there is no update before it responds to the client. Additionally, the 

mobile providers employ pushing techniques to notify the middleware of resources state 

changes.  

For a complete interaction between the mobile service requester and the provider, the 

following steps are followed.  

1. The mobile requester sends a read or write request with a unique service id. A read 

request is sent as an HTTP GET method while a write request can be an HTTP POST, 

PUT or DELETE methods. 

2. The middleware receives the request and extract the HTTP method and executes step 3 or 

4.  

3. If the HTTP method is GET, the middleware pushes the read request to the specified 

mobile provider. If the provider is reachable, it searches through its local storage for the 

particular service id and returns the response to the requester through the middleware. 

However, if the mobile provider is not reachable, the middleware searches for that service 
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id in its cache and return the resource to the mobile requester with the message that the 

mobile provider is temporary not available. In case the two client devices are 

disconnected, the entire request is cancelled.  

4. If the request is a POST method, the middleware requests the creation of the requested 

resource or service on the mobile provider. The middleware stores a copy of the service 

and notifies all clients that have subscribed to the system about the arrival of a new 

update. All disconnected clients will be notified of the write request when they reconnect. 

Apart from the above described scenario, a mobile service provider can access its own 

resources in the local cache. If the user of a mobile service provider updates a resource or creates 

a new resource, a copy of the resource is first stored locally before the middleware is notified to 

apply the update to its cache. 

3.1.1 Network Latency 

The cloud-based middleware serves as a router for all the asynchronous messaging 

between the mobile service requesters and the mobile service providers. All the information of 

the mobile provider is logged in the middleware cache for callbacks; based on the proposed 

framework by Golding [31] on achieving eventual consistency. The middleware, therefore, uses 

pushing to send updates to the mobile participants that have subscribed for services, as and when 

they arrive in real-time. The middleware storage facility also serves as a repository for the 

mobile clients to read data that might be with other disconnected mobile providers. Thus, the 

sending of read/write requests to mobile hosts that are disconnected is prevented. 
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3.1.2 Resource State Synchronization 

    Due to the intermittent loss in connectivity in a Wi-Fi network, the architecture 

employs the asynchronous messaging mechanism for all communications. The synchronous 

messaging technique does not lend itself well in mobile distributed systems because propagated 

state changes from the middleware or acknowledgements from the mobile hosts can get lost. 

Hence, our proposed resources update management cannot follow the update technique proposed 

by Golding [31] which follows synchronous messaging in a wired network. The middleware 

therefore, extended on Golding’s [31] research to propagate new state changes to subscribed 

mobile clients in a Wi-Fi network. Furthermore, only updated resources are pushed from the 

middleware to the mobile participants that re-connect. 

The architecture also uses read-your-write consistency based on the report by Monash 

[29] that this consistency technique works best for NoSQL back-end systems. All updates 

applied to resource states are visible to the requester on the next read request. The architecture 

also uses timestamps to ensure reliability of the data. The new states are pushed to all clients 

within an inconsistency window so that eventually, all clients will receive the update. For 

instance, if a provider sends a resources state change message to another provider/requester, the 

latter will update its local cache with the new state and only the new state will be seen 

subsequently on every read request. If the request from the provider cannot reach the requester 

because the latter is disconnected, the proposed middleware will notify the provider with 

temporal unavailability response. The next section discusses the middleware and how all the 

functionalities are achieved.  
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3.2 Middleware Platform/Framework 

The cloud hosted middleware acts as a proxy between the mobile service requesters and 

the mobile service providers to control read/write replicas. The middleware is centralized in 

order to minimize the challenges of data synchronization that otherwise could have arisen if the 

middleware is distributed. The middleware redirects the HTTP requests from the requester and 

responses from the service providers.  
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Figure 3.3: Middleware features 

The internal framework of the middleware is shown in Figure 3.3. When an HTTP 

method is invoked from a mobile participant, the request first identifies the HTTP requester 

interface of the middleware through a specified port. All requests are then forwarded to the 

transaction manager which determines the nature of the request (e.g. read or write request). The 
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transaction manager communicates with the propagation controller to notify the mobile 

host/provider of the request through the HTTP provider interface. The response of the provider is 

sent back to the requester through the transaction manager. All responses are also stored in the 

cache by the persistence manager. In case the propagation controller responds that the specified 

provider is unavailable, the persistence manager searches through the cache and return the result. 

The cache stores replicas of the resources that are created on the mobile service provider. Also, 

the cache is structured to store every user’s record in individual tables. In addition, anytime that 

the provider’s resources are updated, the updates are pushed to the middleware through the 

HTTP provider interface. The updates are then forwarded by the propagation controller to the 

persistence manager for it to update the cache. All events are determined by the event handler for 

appropriate notification (e.g. resource state change, client connected, and client disconnected).  

The main functionalities of the middleware are discussed below.  

 Read/Write Request - The middleware controls the race condition between a read request 

and a write request that are issued at the same time. This is achieved by introducing 

timestamps on each request. The transaction manager determines which request comes first 

and processes that request with a higher priority. 

 Caching – Since REST affords stateless communication between system components, 

resources on the mobile provider are replicated independently on the middleware. The 

persistence manager controls the storage of resources updates from the mobile provider. The 

caching component stores states of mobile service providers that subscribe for services and 

also stores state of resources as well. The cache has a RESTful interface that supports the 

CRUD methods. This means that the content of the cache can be created, read, updated, and 

deleted. All interactions with the cache are handled by the persistence manager. The 
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transaction manager requests from the persistence manager for a particular resource in its 

cache through a read method. The propagation controller also sends a request to the 

persistence manager for the creation of a service or an update of a service state through a 

write request.  

 Routing - All communications are routed through the middleware because some mobile 

participants can disconnect due to network instability. In such cases, other clients who want 

to access resources and services from disconnected mobile nodes can access them from the 

middleware. The propagation controller acts as a reverse proxy by using the long-polling 

technique to detect state changes of resources on the mobile provider. The propagation 

controller also informs the persistence manager to store the new state of the resource or 

service in its local cache. The propagation controller then uses pushing techniques to inform 

the transaction manager to propagate the new state of resources to subscribed service 

providers and requesters via HTTP.  

 Events - The other duty of the middleware is managing events. The events that the events 

handler is managing are related to state changes in resources, disconnection of a client 

device, and connection of client service providers. 

o Resource state change: When updates arrive in the cache, the new states of resources 

override the older versions in the cache. The events handler then informs the propagation 

controller to propagate the changes to all mobile service providers who have subscribed.  

o Connection of a client: The events handler notifies the propagation controller of all 

connected clients so that updates will be sent to them as and when they arrive in real-

time.  
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o Disconnection of a client: Updates are pushed to disconnected clients when they 

reconnect. The events handler notifies the propagation controller to send only updated 

services that these disconnected clients don’t have. 

The other desired properties of the middleware are fault-tolerance and scalability. 

Hosting the middleware on the cloud services will facilitate such results. Since the entire client 

requests are routed through the middleware, the number of requests that get to the mobile 

providers directly reduces. Hence, the workload on the entire system will be evenly distributed 

on the “powerful computer” in the cloud. In the next section, the mobile side functionalities are 

explained.  

3.3 Mobile Side Framework 

The mobile side framework consists of the mobile service requesters and the mobile 

service providers/hosts. The requesters are the users plus the devices that send HTTP messages 

to the middleware and the provider either for a resource to be created or to fetch an existing 

resource. The mobile service providers on the other hand are the users plus devices that host the 

RESTful Web services. In our architecture, the mobile service providers behave as Web servers. 

Recently, more developers are looking towards HTML5 mobile applications as a solution 

for targeting multiple devices and platforms. This is because the browser is becoming the default 

platform and its de facto standards are HTML5 and JavaScript [75]. Smartphones and tablets 

support the development of native applications which are platform specific. However, these 

devices also have an embedded browser which makes it possible to deploy mobile web 

applications. Thus, with the advancement of HTML5, a hybrid app methodology is adopted in 

the proposed design of the architecture to build the mobile web app that looks and functions as a 

native app. The new stack of HTML5 is shown in Figure 3.4. 
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Figure 3.4: HTML5 stack on the mobile platform [76]  

  As illustrated in the HTML5 stack, the native functionalities that have access to the 

device can be imported into the mobile Web app. HTML5 also supports server and services 

which makes it affordable to consume Web services. Thus, the Web centric nature of REST 

enabled the proposed architecture to embed a Web server into the mobile device. Also, Web 

services can be invoked in the embedded browser regardless of the mobile device platform. 

Embedded browsers provide rich graphical user interfaces and support multiple web based 

languages such as HTML, JavaScript, CSS, and so on.  

Furthermore, all interactions with the middleware are initiated from the mobile devices. 

The responses from the middleware are pushed to the embedded browser which displays it on the 

screen. The main features of the mobile requester and the provider are discussed in the next 

section. 
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3.3.1 Mobile Service Requester 

The mobile service requester is a client consumer of the RESTful web services that are 

being propagated by the middleware and the mobile provider. Key features of the requesters’ 

application are discussed below. 

 Client Side Caching: Resource replication on the mobile service requesters is addressed 

by exploring mobile caching techniques. The mobile cache resides on the mobile device 

and keeps local copies of resources. The cache components are built to minimize the 

amount of calls that are made to the middleware. This is good for the management of 

bandwidth usage. The successful responses to HTTP GET requests are cached but failure 

attempts are not cached. Also, the client cache validation is done using HTTP HEAD and 

GET requests. The mobile client compares the Etag – which is a unique attribute of a 

Web resource, to determine whether the local copy of the resource is the same as the 

providers’ resource. A change in Etag is an indication of a possible update of an existing 

resource. Furthermore, the last successful cached copy of the resource is pushed to the 

screen whenever the client is disconnected.  

 Application Execution Workflows: The workflow is to monitor state changes of resources 

from the middleware and the provider. There is the tendency of having outdated resources 

state in the client cache especially in cases of network communication loss between the 

client and the middleware. Thus, new updates on the middleware might not reflect on the 

client side at the same time. The workflow manages the CAP theorem phenomenon by 

ensuring high availability over data consistency since partition tolerance cannot be avoided 

due to the disruptions in connectivity in a Wi-Fi environment. The mobile service requester 

sends a request to the middleware to determine whether a new update has arrived on the 
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mobile hosts. Since network connectivity is crucial in mobile technology, a periodic HTTP 

HEAD request is sent to the middleware for only the Etag. In addition, for short-lived 

disconnections between the client and the middleware, the workflow ensures distribution 

transparency by trying to reconnect. When the disconnection is long-lived, distribution 

transparency is compromised and the last successful stored update in the cache is pushed to 

the screen. The user is notified that the resource is from the cache and since the resources are 

time stamped, the user gets to know how old the data is in the cache.     

3.3.2 Mobile Service Provider/Host 

Though the mobile providers have the same functionalities as those of the requesters, 

they have additional functionalities. The idea is that the mobile provider will act as a Web server 

as well as a consumer.   

R1
R2
R3
.
.
.

Rn

HTTP request from 
Middleware

HTTP response from 
Provider

HTTP /1.1 200 OK

REST-WS

POST {id, JSON message}

GET {id}

PUT {id, JSON msg new}

DELETE {id}

User
 

Figure 3.5: The functionalities of the mobile provider  

The RESTful Web Services (REST-WS) created are hosted on the mobile provider as 

resources, labeled R1 to Rn in Figure 3.5. When a user sends a write request (i.e. HTTP POST 
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method) from the mobile device, the request is created as a REST-WS resource. The newly 

created resource is given a globally unique identifier which enables other mobile participants to 

select or search for that resource. The mobile providers’ resources are accessed using URIs that 

are provided by the middleware. The communication protocol used is HTTP because JSON data 

can be passed across it.  

Also, the responses from the provider make use of the HTTP status codes. This notifies 

the middleware on the state of a particular resource. The requester is informed whether there is 

an error in a request (with a 400 status code) or the request is successful (with a 200 status code). 

Figure 3.6 shows how the provider executes incoming requests from the middleware. 

RequestConnection

Request: Read Request
Request: Write Request
Action: receive
Action: respond
Action: close
Action: setNotification

Connect

URL: http://http://128.233.110.71:9000/patientlist
Type: REST

Notification

Type: notify incomimg req 
Type: resource states changes

Read Request

HTTP Methods: GET and HEAD
Value: <<resource_id>>
Search: local storage
Id_found: return resource + 200 OK
Id_notFound: 404 Not Found 

Write Request

HTTP Method: POST
Assign_Id: <<resource_id>>
Time: set timestamp
Storage: local storage
Update: update request to middleware
Acknowledgement: 201 Created

HTTP Method: PUT
Value: <<resource_id>>
Search: local storage
Update_1: update the resource
Update_2: update request to middleware
Acknowledgement: 201 Created

respond

respond

 

Figure 3.6: Request execution by the mobile provider  

The mobile provider accepts a read request in the form of an HTTP GET method and an 

identifier of the specific resource. However, write requests are HTTP POST method with an 

identifier and JSON message for the creation of a new resource. Another write request is the 
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HTTP PUT method with an existing resource identifier and the new JSON message for updating 

an existing resource. Also, resources can be deleted with a write request if the HTTP DELETE 

method is invoked with a specified identifier of the resource. 

When a write request is pushed with a JSON message from the provider, the request is 

immediately processed on the middleware and a response is sent back. The provider uses the 

combination of polling and pushing to synchronize data on the middleware.  

3.4 Summary 

An architecture has been proposed in this chapter to address the issue of network latency 

and the challenge of resources state management in a Wi-Fi network. The proposed architecture 

is comprised of the following main components: mobile service requesters, middleware, and 

mobile service providers.  

The mobile provider hosts the RESTful Web resources; and a copy of each resource is 

replicated on the middleware. The replication technique is to ensure the availability of resources 

to the mobile service requester when the provider is unreachable. In addition, techniques such as 

pushing and polling are proposed to minimize latency. 

Furthermore, resources state synchronization challenges are addressed by proposing the 

read-your-write consistency mechanism. This approach has been described in other research as a 

strong consistency approach especially in NoSQL database systems. 

In the next chapter, an implementation is done to determine the feasibility of the 

architecture. The various tools that are employed in the implementation are justified and 

explained. Also, the integration of the tools is described.    
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CHAPTER 4 

IMPLEMENTATION OF THE ARCHITECTURE 

A prototypic E-health application, called “Patient App”, that model patient records, is built 

based on the proposed architecture. Using the application, health care professionals can access 

the patient records that are being hosted on their colleagues’ mobile devices. A health care 

professional can create a new patient record, request for an existing patient record, or update a 

record. The forthcoming discussions focus on how the implementation is done, and the 

justification of the various programming languages employed as well as the mobile platforms. 

4.1 The Mobile Implementation  

The mobile side implementation is done using HTML5 and JavaScript. Due to browser 

and WebKit diversity; as shown in Figure 4.1, it is impractical for all the functionalities of 

HTML5 to run in all browsers. In order to overcome the challenges of browser diversity, some 

developers proposed Web technology frameworks adoption [76]. Thus, the “Patient App” 

employs Web tech frameworks such as jQuerymobile [77] and jQtouch [78] to overcome the 

limitations of HTML5.  

 

                    

Figure 4.1: WebKit and browser diversity 
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Also, the frameworks aided us to: build compelling user interfaces, achieve browser 

interoperability, and compile the mobile Web app as a native app.  The mobile platforms that are 

considered in the implementation are the BlackBerry Smartphone, BlackBerry Playbook and 

Android tablet devices. Since the mobile platforms are heterogeneous in terms of their 

underlying operating systems, building a native app will mean that multiple versions of the same 

application have to be built in different programming languages. To avoid this situation, we 

employed HTML5 and the Web tech frameworks to write a single code version which is 

deployed on the various mobile platforms. 

 

4.1.1 Mobile Client Platforms  

The BlackBerry version of the application is built as a BlackBerry WebWorks project, 

which is invoked in the embedded browser. The Blackberry WebWorks platform supports 

multiple web based languages and web technologies like CSS, HTML5, and JavaScript. Using 

WebWorks, the jQuerymobile and jQtouch mobile web frameworks were adopted into the 

application. As a result of using the WebWorks platform, the single code base application is 

deployed successfully on the BlackBerry smartphone and the Playbook.  

The mobile side application is classified into three components: user interface 

component, workflow, and cache manager. The user interface is rendered in an embedded 

browser but looks like a native application. Also, the use of the HTML5 frameworks, aided the 

application to have the same look and feel across different platforms. All responses from the 

middleware, which are controlled by the workflow, are pushed to the embedded browser and it 

displays on the screen. Figure 4.2 shows the user interface of the application on the BlackBerry 

smartphone, Playbook simulator, and the Android emulator. The information shown on the 

Playbook represents a dummy record due to privacy in the E-health domain. 
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   (a) 

 

 

                                                                                  (b) 
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(c) 

Figure 4.2: The UI of the application rendered on the BlackBerry smartphone (a) and BlackBerry Playbook 

simulator (b), and Android emulator (c) 

Since the BlackBerry version of the application is implemented in WebWorks, the same 

code was reused for the compilation of the Android WebView project. The WebView is a 

framework that supports the deployment of mobile web applications on the Android devices. The 

use of HTML5 in the BlackBerry implementation facilitated the integration of the app on the 

Android tablet without writing additional codes.    

In terms of resources manipulation, the application uses the following HTTP methods: 

HEAD, GET, and PUT. The requests are created using the XMLHttpRequest() class provided in 

JavaScript. As a result, users can make asynchronous requests to the middleware through the 

interaction with the UI. The workflow coordinates the HTTP requests and responses to determine 

whether a resource state has changed. A periodic HEAD operation is invoked by the workflow to 

the middleware and the Etag value of the response is examined to determine whether updates 
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have arrived on the middleware. In addition, the GET and HEAD methods use the HTTP 200 

OK response code to inform the workflow of the success of a request-response interaction. The 

HTTP 400 response is sent to the client if there is a problem with the request that the middleware 

doesn’t understand.  

Furthermore, the mobile side application has a local cache where all the RESTful Web 

resources are stored. When the user makes a request to the middleware and the middleware 

cannot be reached, the workflow searches through the local cache and pushes the cached data to 

the screen with a clear message that the middleware is temporarily unavailable. The timestamp 

on each data informs the user of the “age” of the data. Also, the validation of the cache is done 

through the comparison of the resources Etag values. Whenever, an update is applied to a 

resource on the middleware or the mobile provider, the cache validation function is invoked and 

the new state of the resource is stored in the cache to replace the outdated resource. Figure 4.3 

shows a code snippet of the validation function in JavaScript. 

 

Figure 4.3: Code snippet of the validate function 
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Also, the workflow coordinates all the activities on the mobile client as well as 

controlling the request-response interaction between the client and the middleware. The 

architecture of the mobile implementation is shown in Figure 4.4. Though the embedded browser 

approach facilitated the deployment of a single code on the BlackBerry and the Android devices, 

these mobile platforms have certain files that are platform specific. For instance, on the 

BlackBerry platform, the WebWorks application cannot be deployed without the config.xml file. 

This file - which is the configuration file, defines the permissions, the attributes, and the 

application name. 

Middleware

Web tech Framework 
libraries

Mobile Application

Embedded Browser

JavaScript libraries User Interface

P
u

lli
n

g

Workflow

HTML5 platform

Platform specific files RESTful WS interface

Cache 

 

Figure 4.4: Design of the mobile app  
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4.1.2 Enabling the Mobile Device as a Provider 

To model the mobile device as a host of the RESTful Web resources, the providers’ 

application is implemented with a tool called Couchbase Mobile [79]. The Couchbase Mobile 

framework supports the local storage of the RESTful resources on the mobile device; and it also 

facilitates resource synchronization with NoSQL back-end systems in real-time. Also, the 

Couchbase Mobile framework supports data in JSON format which makes it efficient for the 

mobile consumption. 

However, the Internet Protocol (IP) address of a mobile device changes as the user moves 

from one hotspot to another. In addition, registering the device name within a network domain is 

not ideal because the user can move from one network domain to a different domain. In view of 

these challenges, the Couchbase Mobile framework is configured to establish a dual 

communication channel between the mobile device and the middleware. Thus, the mobile 

provider can push RESTful resources to the middleware or poll resources from the middleware. 

In addition, the mobile requester can send an HTTP request to the provider using the IP address 

or the registered computer name of the middleware – which is running in the cloud.  

In situations of unavailable connectivity, the user can create resources on the mobile 

provider and these resources are stored and queued in the Couchbase Mobile framework. 

Requests that will be arriving on the middleware also get queued in the order in which they 

arrive. Whenever the connection is restored, the Couchbase Mobile establishes a connection with 

the middleware which allows the data on the provider to be pushed to the middleware and the 

data on the middleware to be pulled by the mobile provider.   
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4.2 Middleware Implementation 

In our architecture, the middleware acts like a hub; linking the entire mobile participants 

and does message routing from one mobile node to another. In view of this, two of the leading 

programming platforms that support backend systems for mobile communication are explored to 

implement two versions of the middleware. These programming platforms are Erlang [80] and 

CouchDB [81]. The programming platforms have NoSQL database systems which are good for 

enforcing read-your-write consistency [29]. In addition, they support concurrent requests and 

database distributions. The implementation of the two versions of the middleware using the 

various programming platforms is discussed in the next sections. 

4.2.1 Middleware Implementation in Erlang  

The Erlang middleware is built on the Generic Server Behaviour (gen_server) process. 

The gen_server is a module that enables the implementation of a server that supports request-

response interaction between a client and a server. Thus, the implemented middleware has two 

HTTP interfaces. The first HTTP interface is exposed to the mobile requester who uses a set of 

HTTP methods to send RESTful requests. The second HTTP interface allows the mobile 

provider to continuously push data from its local storage to the middleware. To receive a request 

from the mobile participants, the middleware uses the httpc module. The module supports the 

HTTP/1.1 companionable clients and facilitates our middleware to use the following HTTP 

methods: HEAD, GET, PUT, and POST. There are other HTTP methods such as TRACE, 

OPTIONS, and DELETE that the httpc module supports though they were not used in our 

implementation.  

Also, the middleware uses the DETS storage facility of Erlang to keep the replicas of the 

providers’ resources. The DETS aided the middleware to store data on the disk as objects. The 
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middleware storage is designed to consume the RESTful resources and as a result, the CRUD 

operations are supported. Figure 4.5 shows write and read operations in the DETS table. 

Every user has a DETS table where all the user activities are stored. All established 

communications are recorded with the time of the communication. This aids the middleware to 

report to a mobile service requester on the reliability of the replica data on the middleware. 

 

 

 

 

 

 

 

 

Also, the gen_server module has functionalities for error reporting and debugging. Thus, 

failure requests can be traced as well as preventing unsupported operations from users. The steps 

that the middleware follows to complete a request-response interaction between a mobile service 

provider and a requester are illustrated in Figure 4.6. If the provider is not reachable, steps 2, 3, 

and 4 will fail so in such situations, the middleware pushes the providers’ resource in the DETS 

to the requester to accomplish step 5. 

Figure 4.5: Read and Write operations in the DETS table 

insert(Key, Value) ->                %% POST or PUT command 

    case cache: lookup(Key) of    %% Checks if key already exists 

        {ok, Pid} -> 

            element: replace(Pid, Value) ; 

        {error, _} -> 

            {ok, Pid} = element: create(Value) , 

            cache: insert(Key, Pid) 

    end. 

 

lookup(Key) ->                           %% read command 

    try 

        { ok, Pid} = cache:lookup(Key) ,  %% Fetches pid for keys 

        { ok, Value} = element:fetch( Pid) , 

        { ok, Value} 

    catch 

        _Class:_Exception -> 

            {error, not_found}  

    end. 
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Figure 4.6: The middleware as the coordinator of the request-response interactions 

4.2.2 Middleware implementation in CouchDB 

The second version of the middleware is built on the Apache CouchDB [81] framework. 

CouchDB supports RESTful requests through HTTP interfaces. The CouchDB framework is a 

document-centric database that supports data in JSON format only. Furthermore, a unique 

feature of CouchDB is the ability to do database replication on multiple systems.  

The CouchDB middleware synchronizes the data on the middleware with the Couchbase 

Mobile framework that is running on the mobile provider in real time. When the synchronization 

process is terminated, upon reconnection, the synchronization process resumes form where it last 

stopped.  

Also, the CouchDB middleware has two HTTP interfaces that are exposed to the mobile 

participants. All the interactions in the system are RESTful and as result, the CRUD operations 

are supported as well. The only issue in the CouchDB implementation is that the HTTP POST 

method is not supported at the moment. Thus, the HTTP PUT method is use for updating an 

existing record or creating a new record. Each document has a revision number set by CouchDB 

to track the changes that are being made to the document.  
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Furthermore, the CouchDB framework provides views for querying the database. The 

views are created using JavaScript functions to output the type of data that the user wants to see. 

Figure 4.7 shows a JSON data of a patient exported from the CouchDB middleware. 

 

 

 

 

4.3 Known Issues 

The implementation of the architecture focuses on enabling the mobile device as host of 

providers and consumers of RESTful Web services. Though the chosen domain for the app 

development is E-health, some challenges within the E-health domain have been overlooked in 

this thesis; hence will be investigated in another work. 

Firstly, E-health relies on integrating multiple health information infrastructures which 

are sometimes operated by different health care providers. As a result, it is a challenge to 

integrate new applications into the existing health information systems. In view of this, we 

deployed the middleware on an independent computer platform to support the mobile requesters 

and the providers. The integration of the middleware into the existing heath information system 

is outside the scope of this thesis. 

Also, individual patients attend different health care facilities in different locations. 

Additionally, many health care professionals can attend to the same patient in different 

{ 

"_id":"2","_ 

rev":"4-095e72000ca093d49b49b7992a3f185e", 

"name":"Richard Lomo", 

"address":"104 South Lane, Regina, SK", 

"age":"60", 

"sickness":"Fever", 

"Personal doctor":"Dr. Andrew R", 

"updated by":"Dr. Rich" 

“last update”: “October 15, 2011” 

} 

 
Figure 4.7: Record from CouchDB 
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hospitals/clinics. However, in our implementation, the aggregation of all of the patient’s data into 

one has not been looked into. This is also considered outside the scope of our research.  

4.4 Summary 

In Chapter 4, a prototypic application that aids health care professionals to share the data 

of their patients with colleagues is built. The mobile-side of the application employs HTML5 and 

Web tech frameworks which enabled the deployment of a hybrid application (i.e. mobile Web 

app that looks and has the same functionalities as a native app). Also the application is cross-

platform independent hence, was deployed successfully on BlackBerry Playbook, BlackBerry 

smartphone OS 5.0, and Android tablet devices. 

Furthermore, two versions of the middleware were implemented using the leading 

concurrency languages for building NoSQL systems, Erlang and CouchDB. The middleware acts 

as a proxy and redirect all requests from a mobile service requester to the appropriate mobile 

service provider. In the next section, an evaluation of the implementation is conducted to 

determine how latency is minimized and how resources state changes are managed. 
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CHAPTER 5 

EXPERIMENTS 

The BlackBerry smartphone OS 5.0, BlackBerry Playbook tablet, and Android tablet 

device are the mobile devices put forward for the testing and simulation in the experiments. The 

middleware is hosted on the Amazon EC2 cloud infrastructure. The approaches adopted for the 

evaluation of the problems (Section 1.2) presented in this thesis are fault-injection and 

calculation of overheads. 

All the experiments are simulated in order to enable the observer (i.e. the person 

conducting the experiments) to have more control over the environment. The experiments focus 

on how the implemented architecture minimizes latency; so the overhead introduced by the 

middleware is calculated. Since there are two versions of the middleware, that is the Erlang 

version and the CouchDB version, they are evaluated separately. Also, the experiments justify 

the resources replication technique that is employed in the architecture.   

t2
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Requester Provider

R

R R R

R R R

R
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Figure 5.1:  Times taken to access resources through the Erlang middleware and the CouchDB middleware 

Figure 5.1 illustrates the time, t1, taken to access a resource, R, from the CouchDB 

middleware or from the provider through the CouchDB middleware is measured. Also, the time, 

t2, taken to access the providers’ resources through the Erlang middleware or the replicated 

resources on the Erlang middleware is measured. The two durations, t1 and t2, are compared to 
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determine which one provides a faster time. Furthermore, the accessibility of resources is also 

measured by observing how long it takes for an update to be visible to all the mobile devices that 

are connected. 

The remaining sections of this chapter explain the details of the experimental setups and 

the workloads used. Also, the various tools that are used are explained and full discussions of the 

results are presented. 

5.1 System Requirements and Experiment Goals 

Observer

System

Loads

 

Figure 5.2: Experimental Setup 

The mobile devices under consideration are hosted outside the cloud. The factors that 

influence client-server interaction such as network latency, scalability and reliability in Wi-Fi 

networks are measured and the empirical data is recorded by an observer (Figure 5.2). In a 

situation where heavy workloads are needed, simulation is done with tools such as Apache bench 

[82] and nodeload [83]. The BlackBerry Playbook simulator which is running as the requester is 

setup on a computer with the following specifications in the laboratory. 

Processor: Intel Core i5 

CPU 650 @ 3.20GHz 

3.19GHz 
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RAM: 4GB (2.99GB usable) 

System 32-bit operating system 

Also, the Android Galaxy tablet emulator which is running as the provider is setup on a 

computer with the following specifications in the laboratory.  

Processor: Intel Core i5 

CPU 650 @ 3.22GHz 

3.22GHz 

RAM: 4GB (2.99GB usable) 

System 32-bit operating system 

The Erlang middleware and the CouchDB version are hosted on the computer with the 

following specifications (identical to the Amazon EC2 cloud infrastructure).  

Windows Edition: 

Windows 7 Enterprise 

Service Pack 1 

System: 

Processor: Intel(R) Xeon(R) 

CPU E5140 @ 2.33GHz 2.33GHz (2 processors) 

Installed memory (RAM): 16.00GB 

System type: 64-bit Operating System 

The following is an outline of the experiments to be conducted to determine how the 

implemented architecture deals with latency and resources state change management (section 2). 

Goal 1: Testing resource accessibility on the resources’ hosts 
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Experiment 1: Accessibility of RESTful resources by the requester on the mobile 

provider using the CouchDB middleware as an intermediary proxy. 

Experiment 2: Accessibility of the RESTful resources by the requester on the mobile 

provider using the Erlang middleware as an intermediary proxy. 

Experiment 3: Accessibility of the RESTful resources by the mobile requester on the 

CouchDB storage.  

Experiment 4: Accessibility of the RESTful resources by the mobile requester on the 

Erlang middleware storage (DETS table).  

Goal 2: Scalability testing of the middleware platforms 

Experiment 5: Scalability of the CouchDB middleware platform.  

Experiment 6: Scalability of the Erlang middleware platform.  

Goal 3: Determining the inconsistency window of our system 

Goal 4: Fault injection approaches to determine system responses 

5.2 Evaluation of Overhead 

The evaluation of the system focuses on the latency overhead introduced by the 

middleware. The latency is measured based on the response times in a requester-provider 

interaction. The reason for this experiment is to test how slow/fast it takes to receive responses to 

requests in a Wi-Fi network. In addition another evaluation of latency is conducted in a client-

server interaction to determine which version of the middleware responds faster to mobile 

requests. The durations for read-write requests are observed with the Erlang middleware and the 

CouchDB middleware as shown in the sections below. Also, the scalability test is run to 

determine how much workload the middleware can handle. 
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5.2.1 Resource Accessibility from the Mobile Provider by a Requester 

The experiment on how accessible the RESTful Web resources are on the mobile service 

provider is conducted to determine the latency. The assumption in this experiment is that, the 

mobile service provider is available and reachable. The test at this stage is carried out by 

measuring the round-trip duration for an HTTP GET request from the mobile requester to the 

mobile provider through the middleware. As shown in Figure 5.3, an observer sends an HTTP 

GET request from the mobile requester to the mobile provider through the middleware which is 

hosted in the University LAN and transfers data through a gigabit Ethernet connection. The 

mobile requester (running on a BlackBerry Playbook simulator) and the provider (running on an 

Android Galaxy tablet emulator) connect through the University of Saskatchewan secure Wi-Fi 

network using 802.11g. The RESTful Web resources, R, representing dummy patients records, 

are hosted on the Android tablet emulator. 

Middleware

Requester
U of S secure Wi-Fi

HTTP GET 
request 

Observer Provider

U of S secure Wi-Fi
R

HTTP GET 
response

 
Figure 5.3: Setup for testing resource accessibility on the provider 

At the beginning of the experiment, 600 RESTful Web resources are created and hosted 

on the mobile provider with no resources on the middleware. We hosted 600 RESTful Web 

resources due to the device constraint. The idea in the testing at this point is to determine how 

long it takes to access a providers’ record that is not on the middleware. Furthermore, each 

response from the provider is stored on the middleware before being delivered to the mobile 
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requester. The file size of each resource is approximately 5kb and all the HTTP GET requests are 

sent in a closed loop. In addition, an HTTP request is sent sequentially after the preceding 

request-response interaction is complete. 

Also, to be sure that the requests have not been served from the middleware’s cache, the 

requests are sent to fetch Web resources that have odd numbered ids (e.g. id=1, id=3, id=55 …). 

The mean round-trip time is calculated. Also, to further understand how the values are dispersed 

from the mean round-trip time, the standard deviation (σ) is calculated using the formula below. 

 

where xi is individual request, µ is the mean of all requests, and N is the number of requests.  

Furthermore, if N number of requests from the mobile service requester are served in 

time T, then the  

Maximum Request Rate = N/T 

5.2.1.1 Experiment 1: Measuring Round-trip Time through CouchDB  

The first evaluation of the resource accessibility on the mobile provider focused on using 

the CouchDB version of the middleware. The mobile requester sends HTTP GET requests to the 

CouchDB middleware which does the message routing to the mobile provider. The response 

message from the mobile provider is stored on the CouchDB middleware before finally it is 

delivered to the mobile requester. 

 The tests are repeated five (5) times on each round starting from 1 request to 25 requests. 

The result of the round-trip time between the mobile service requester and the mobile service 

provider through the CouchDB middleware is presented in Table 5.1. Also, the maximum 

number of requests, sequentially in a closed loop, from the mobile requester is observed to be 25 
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(i.e. all the requests beyond 25 failed due to the limitation of the processing capacity of the 

mobile host). 

Table 5.1: Request-response duration through CouchDB 

Mean request-

response time for 

sending 25 requests 

(ms) 

Maximum request-

response time for 

sending 25 requests 

(ms) 

Minimum request-

response time for 

sending 25 requests 

(ms) 

Standard 

deviation  

503.68 817.20 212.2 165.99 

5.2.1.2 Experiment 2: Measuring Round-trip Time through Erlang  

The second analysis of the resource accessibility on the mobile service provider focused 

on using the Erlang middleware. The mobile requester sends the HTTP GET requests to the 

mobile service provider through the Erlang middleware which acts as a proxy between the two 

mobile components. The response from the mobile provider is stored on the Erlang DETS table 

before finally it is delivered to the mobile requester. 

The tests are repeated five (5) times on each round starting from 1 request to 25 requests. 

The result of the round-trip test between the mobile service requester and the mobile service 

provider through the Erlang middleware is presented in Table 5.2. Also, the maximum number of 

requests from the mobile requester is observed to be 25 (i.e. all the requests beyond 25 failed due 

to the limitation of the processing capacity of the mobile host). 

Table 5.2: Request-response duration through Erlang 

Mean request-

response time for 

sending 25 requests 

(ms) 

Maximum request-

response time for 

sending 25 requests 

(ms) 

Minimum request-

response time for 

sending 25 requests 

(ms) 

Standard 

deviation  

563.24 889.60 319.40 158.76 
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5.2.1.3 Discussion of Experiment 1 and Experiment 2  

The results from Experiment 1 and Experiment 2 give us an idea about how the 

middleware influences latency in mobile distributed systems. The two experiments focused on 

how accessible RESTful Web resources are on the mobile service provider. Hence, Figure 5.4 

shows the graph of the average duration for a request-response interaction through the 

middleware in both Experiments. Also, Table 5.3 shows a comparative analysis of the two 

experiments based on the maximum request rate. 
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Figure 5.4: Graph of the requester-provider interaction through the middleware 

Table 5.3: Results comparing Experiment 1 and Experiment 2 

Middleware 

platform 

Average request-

response time for 

sending 25 

requests (ms) 

Standard 

deviation 

Maximum 

request rate 

(request/s) 

CouchDB 503.68 165.99 49.63 

Erlang 563.24 158.76 44.39 

The results show that the CouchDB version of the middleware serves the mobile client 

requester 11.80% more requests than the Erlang middleware under the same conditions. In 
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addition, the CouchDB middleware responds faster than the Erlang middleware considering the 

fact that the CouchDB middleware shows a lower average request-response time. A possible 

reason for the better outcome for the CouchDB middleware is the fact that the mobile providers’ 

resources are stored in Couchbase Mobile. As a result, CouchDB establishes a two-way 

consistency replication technique with the providers’ storage to synchronize the data without the 

intervention of the developer. However, the way the Erlang middleware is designed in the 

implementation, it is only when a requester wants to contact the provider that the middleware 

attempts to fetch the data from the provider. Thus, it takes some time for the data to be 

synchronized with the DETS table.   

Also, finding that the maximum number of requests that the requester can make in a 

closed loop is 25, aids us to understand the processing workload of the mobile provider under 

consideration in this thesis. The middleware therefore has to be designed to keep the number of 

concurrent requests to the mobile provider below 25. Furthermore, the results show that it takes 

an average of 0.5 seconds for a requester to receive response from the provider through the 

CouchDB version of the middleware; while 0.56 seconds is the time for the Erlang middleware. 

In both cases, the time is appreciable considering the fact that the requester is served in less than 

1 second. 

The assumption in the Experiments 1 and 2 is that, the provider is always within the 

reach of the requester. However, the reality is there are times when the provider cannot be 

reached due to unstable Wi-Fi connections. In such situations, the requester is served from the 

middleware’s storage. The next section focuses on the evaluation of accessing the RESTful Web 

resources from the middleware.  
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5.2.2 Resource Accessibility on the Middleware 

The evaluation of the RESTful Web resources accessibility on the middleware is based 

on the assumption that the mobile service provider is disconnected and cannot be reached by the 

requester. Thus it is the responsibility of the middleware to serve the mobile service requester 

from the middleware storage. The set-up for the experiment is illustrated in Figure 5.5. 

Middleware

Requester
U of S secure Wi-Fi

HTTP GET 
request Observer

HTTP GET 
response

R

 

Figure 5.5: Set-up for the evaluation of resource accessibility on the middleware. 

In order to explore the full capacity of the mobile tablet device, a request mechanism is 

implemented on the mobile device that sends two (2) concurrent HTTP GET requests in a closed 

loop. The request mechanism is achieved by using the setTime() and setTimeout() functions in 

JavaScript. When the first HTTP request is sent, the setTime() function is called which records 

the start time. When the second request is sent, the setTime() function records the start time of 

the second request as well. The two requests end with the setTimeout() function being called and 

the request completion times are recorded. The average time to complete the two requests is 

considered as the duration for that number of requests.  

In addition, the HTTP GET request from the mobile requester is not sent to the 

middleware to fetch only one resource; but for multiple resources. To control how this is done, 

from the two concurrent requests, the first concurrent request is sent to fetch Web resources that 

have odd numbered ids (e.g. id=1, id=3, id=55 …). The second concurrent request is sent to fetch 
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Web resources that have even numbered ids (e.g. id=2, id=4, id=56 …). The reason for accessing 

resources based on the nature of the id is to aid the observer to repeat the experiment multiple 

times. The experiments are repeated five (5) times starting from 1 request to 70 requests. The 

time taken for the entire process to complete is recorded and analyzed in Experiment 3 and 

Experiment 4.  

5.2.2.1 Experiment 3: Accessing RESTful Resources on the CouchDB Middleware  

The experiment at this stage is carried out by measuring the duration for the CouchDB 

middleware to serve a mobile service requester with RESTful resources from the middleware 

storage. The mobile service requester sends an HTTP GET request to the CouchDB to fetch the 

replicated resources that are on the middleware.  

The CouchDB storage is initially populated with 10000 records of RESTful resources, 

representing dummy patients’ records. The size of each patient record is approximately 5kb. The 

HTTP GET interaction between the mobile service requester and the CouchDB middleware is 

shown in Figure 5.6 for a patient data with an id 1. An HTTP request is sent after the preceding 

request-response interaction is complete. 

 

 

 

CouchDB database is initially populated   Latency is measured based on the  

 

 

 

 
Figure 5.6: Request response data between the mobile device and CouchDB 

HTTP GET Request 
GET id=1 HTTP/1.1 
Host: xoxo.usask.ca 
Accept: Application/json 
 
 
CouchDB Middleware Response 
HTTP/1.1 200 OK 
Server: CouchDB/1.0.2 (Erlang OTP/R13B) 
Etag: "9-a981e1f8d8ba2fcf86f088b98119e374" 
Content-Type: application/json 
Content-Length: 298 
 
{"_id":"1","_rev":"9-a981e1f8d8ba2fcf86f088b98119e374","name":"Agnes 
Kwadzo","address":"103 Cumberland, Saskatoon SK","sickness":"Malaria","doctor":"Dr. Richard 
J","age":70,"updated":"Dr. Shomo J","_attachments":{"patient1-
002.jpg":{"content_type":"image/jpeg","revpos":3,"length":2077,"stub":true}}} 
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The maximum number of requests that the mobile service requester, running on the 

Blackberry Playbook, could make is observed to be seventy (70); and the requests are sequential. 

All the requests beyond 70 return an error due to the processing constraint of the mobile 

requester. The mean round trip time is calculated and recorded as shown in Table 5.4. The 

standard deviation from the mean is also calculated. 

Table 5.4: Resource accessibility on the CouchDB middleware 

Mean request-

response time for 

sending 70 requests 

(ms) 

Maximum request-

response time for 

sending 70 requests 

(ms) 

Minimum request-

response time for 

sending 70 requests 

(ms) 

Standard 

deviation  

397.39 751.60 27.40 195.15 

 

5.2.2.2 Experiment 4: Accessing RESTful resources on the Erlang Middleware  

The evaluation in Experiment 3 is emulated in Experiment 4 with the Erlang middleware. 

Thus, resources which were on the CouchDB middleware have been replicated on the Erlang 

middleware. The middleware cache is built in Erlang DETS - which supports read requests. The 

HTTP GET interaction between the mobile service requester and the Erlang middleware is 

shown in Figure 5.7 for a patient data with an id 1. 

 

 

 

 

 

 

 

 

Figure 5.7: Request response data between the mobile device and the Erlang middleware 

HTTP GET Request 
GET id=1 HTTP/1.1 
Host: Semeru.usask.ca 
Accept: Application/json 
 
 
Erlang Middleware Response 
HTTP/1.1 200 OK 
Server: Erlang OTP/R13B 
Etag: "9-a981e1f8d8ba2fcf86f088b98119e374" 
Content-Type: application/json 
Content-Length: 298 
 
{"_id":"1","_rev":"9-a981e1f8d8ba2fcf86f088b98119e374","name":"Agnes 
Kwadzo","address":"103 Cumberland, Saskatoon SK","sickness":"Malaria","doctor":"Dr. Richard 
J","age":70,"updated":"Dr. Shomo J","_attachments":{"patient1-
002.jpg":{"content_type":"image/jpeg","revpos":3,"length":2077,"stub":true}}} 
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Since the resources hosted on the CouchDB middleware are identical to those replicated 

on the Erlang middleware, the properties such as the file size is the same (i.e. 5kb). Also, the 

maximum number of requests that the mobile service requester, running on the Blackberry 

Playbook, could make in a closed loop is observed to be seventy (70). All the requests beyond 70 

return an error as well due to the processing constraint of the mobile requester. The requests are 

sent sequentially. The result from Experiment 4 is recorded in Table 5.5 below.  

Table 5.5: Resource accessibility on the Erlang middleware 

Mean request-

response time for 

sending 70 requests 

(ms) 

Maximum request-

response time for 

sending 70 requests 

(ms) 

Minimum request-

response time for 

sending 70 requests 

(ms) 

Standard 

deviation  

366.85 689.60 40.40 183.35 

 

5.2.2.3 Discussion of Results from Experiment 3 and Experiment 4 

The results from Experiment 3 and Experiment 4 are analyzed and a comparison is made 

to understand how fast a mobile requester/provider can be served from the back-end system. 

Thus, Table 5.3 presents a comparative analysis of the two experiments based on the maximum 

request rate. The averages are also plotted as illustrated in Figure 5.8. 

Table 5.6: Results for Web resources accessibility on the middleware 

Middleware 

platform 

Average request-

response time for 

sending 70 

requests (ms) 

Standard 

deviation 

Maximum 

request rate 

(request/s) 

CouchDB 397.39 195.15 176.15 

Erlang 366.85 183.35 190.81 
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Figure 5.8: Web resources accessibility on the middleware 

The results show that the Erlang middleware serves the mobile client requester/provider 

8.32% more requests than the CouchDB middleware under the same conditions. In addition, the 

Erlang middleware responds faster to the client request whenever the provider is not available.   

Also, the fact that the mobile tablet device can make a maximum of 70 requests in a 

closed loop gives us an idea about how many updates can be read on the mobile device within a 

particular duration. In cases of loss of connectivity between a health care professional’s mobile 

device and the backend systems, patient records can be created/updated on the middleware by 

other health care professionals. Disconnected mobile devices that reconnect later can read up to 

seventy (70) requests sequentially in a closed loop. This information is vital in determining the 

best way of modeling the mobile side application in order not to overload the mobile tablet 

device with requests especially when the user is disconnected for a long period.  
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Though the result shows that the Erlang middleware facilitates faster request-response 

time, the percentage difference is not much compared to the CouchDB middleware. The reason 

is that, CouchDB database also runs on Erlang Open Telecom Platform (OTP) framework.  

Since the entire communication between the mobile requesters and providers are routed 

through the middleware, the middleware should be able to handle large amount of concurrent 

requests. In view of this, a scalability test is proposed since generally, the performance of 

systems slows down drastically during peak loads. 

5.2.3 Testing for Scalability 

In order to determine the performance of the middleware when the users as well as the 

users’ requests increase, the scalability test is conducted. Since Experiments 1, 2, 3 and 4 

focused on the interaction between a single requester and a single provider, the full potential of 

the middleware could not be determined. Thus, a load generating tool called Apache Bench [82] 

is used as the client to send concurrent HTTP requests to the middleware for resources at a 

controlled rate. The load generating tool is installed on a computer with the specifications in 

section 5.1 in the laboratory. The set-up for the load capacity testing of the middleware is 

illustrated in Figure 5.9.  

U of S Network

Concurrent HTTP 
GET requests

Load Generator

Observer
Middleware

R

U of S Network

                   
 

Figure 5.9: Set-up for the scalability test 
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The computer on which the load generator is running connects to the middleware’s 

computer through a Gigabit Ethernet connection. The load generator is configured to simulate 

the activities of 500 concurrent users of the system. The number of concurrent HTTP requests 

that the users can send ranges from 500 to 40000. The Apache Bench tool is also configured to 

return the mean throughput (i.e. request per second) every 10 seconds. 

5.2.3.1 Experiment 5: CouchDB Middleware Load Testing  

The load generator is configured to send concurrent HTTP requests to the CouchDB 

middleware to consume the RESTful resources that reside on the middleware. The RESTful 

resources are represented as patients’ demographic records, as illustrated in the JSON data in 

Figure 5.10. The size of each Web resource is 5kb. Also, the load generator sends requests at a 

rate of 1 request per 10 seconds. The rate at which the request is sent follows the exponential 

distribution of mean, 0.1 requests/second. 

 

 

 

 

The result of the performance of the CouchDB middleware is presented in Table 5.7.  

Table 5.7: Outcome of the CouchDB middleware's performance 

Mean Throughput 

(req/s) 

Maximum 

Throughput 

(req/s) 

Minimum 

Throughput 

(req/s) 

Standard 

deviation  

124.23 135.20 115.51 4.90 

{ 
"First Name":"Richard", "Last Name":"Kwadzo", 
"Phone":"(306) 888 8888", "Email":”lomoteyr@myemail.com”, 
 “Address”:"103 Cumberland, Saskatoon SK", 
"Room Number":"345", "Top Diagnosis":"Malaria", "Doctor":"Dr. Richard J", 
"Age":70, "Emergency Contact”:"Dr. Shomo J", 
"_attachments":{"patient1-
002.jpg":{"content_type":"image/jpeg","revpos":3,"length":2077,"stub":true}}
} 

 

Figure 5.10: Patient Demographic record 
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5.2.3.2 Experiment 6: Erlang Middleware Load Testing  

The experiment here focuses on the scalability of the Erlang middleware. The load 

generator sends concurrent requests to the middleware for the RESTful resources which are 

stored in the DETS table. These Web resources are identical but independent of the ones on the 

CouchDB middleware, hence are of the same JSON format as shown in Figure 5.10. Also, the 

size of each Web resource is 5kb. The request rate follows the exponential distribution of mean, 

0.1 requests/second. 

The result of the performance of the Erlang middleware is presented in Table 5.8 below. 

Table 5.8: Outcome of the Erlang middleware’s performance 

Mean Throughput 

(req/s) 

Maximum 

Throughput 

(req/s) 

Minimum 

Throughput 

(req/s) 

Standard 

deviation  

320.42 378.70 275.60 28.89 

5.2.3.3 Discussions of Results from Experiment 5 and Experiment 6 

The results from Experiment 5 and Experiment 6 are illustrated in the graph shown in 

Figure 5.11. 
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Figure 5.11: The performance of the two middleware 

Again, the outcome from the scalability testing shows that under the same workload, the 

Erlang middleware is more efficient. From the analysis, the Erlang middleware produced a 

percentage increase of 157.92% throughput in comparison with the CouchDB version. The 

outcome shows that the Erlang middleware responds to the mobile requests faster than the 

CouchDB counterpart. In view of this, it is justifiable to do the RESTful Web resources 

replication on the Erlang middleware as a way of minimizing latency.  

Also, during the testing in Experiments 5 and 6, it is observed that both middleware 

versions respond successfully to all the concurrent HTTP requests ranging from 500 to 40000. 

This proves that the middleware is reliable and the cloud environment for hosting the data is 

highly available. Though the maximum number of requests used for the analysis is 40000 

requests, the Erlang middleware can handle more requests beyond this number. The limitation 

however is that, it takes a longer time (almost half an hour) for a request to be served for all 
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requests beyond 40000. The CouchDB middleware on the other hand, crashes after 40000 

requests. 

5.3 Determining the Inconsistency Window (Using Read and Write Mix) 

The read and write mix experiment focuses on determining the inconsistency window of 

the designed architecture. The inconsistency window is the time frame within which updated 

Web resources will be visible to all connected mobile participants. The eventual consistency 

technique that is employed in the architecture is the read-your write consistency. Additionally, 

the read-your-writes consistency technique is described as a strong consistency model for 

NoSQL backend systems [29]. Thus, the model was adopted in our implementation since the 

Erlang DETS storage and CouchDB storage are NoSQL oriented. The setup for the test is 

illustrated in Figure 5.12. 

Mobile 
requester/
provider

Middleware

R

HTTP POST 
request

U of S network

U of S secure Wi-Fi
R

READ R

Observer Nodeload

U of S network

 

Figure 5.12: Setup for determining the inconsistency window 

In conducting the inconsistency window testing, a tool called nodeload [83] is installed 

on a desktop computer in the laboratory. Nodeload is a JavaScript based tool that generates 

HTTP read and write requests in a closed loop. In our experiment, the nodeload tool is used for 

generating HTTP POST (i.e. write) requests to the middleware. A sample HTTP POST request 
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to the Erlang middleware is shown in Figure 5.13. The same write request works for the 

CouchDB middleware but uses the HTTP PUT method to create a new Web resource.  

The middleware creates a copy of the request as RESTful resources and forwards the 

newly created resource to the intended mobile participant. The mobile device uses continuous 

polling technique to read the newly created resources from the middleware.  

 

 

 

 

The experiment started with the CouchDB middleware as a proxy between Nodeload and 

the mobile device. No initial resources were created on the middleware or the mobile provider. 

The Nodeload tool is configured to send a maximum of 500 HTTP POST requests sequentially 

in a closed loop to the middleware. The experiment used 500 requests as the benchmark because 

it was observed that sending more than 500 write requests returns an error (failed request). Each 

Web resource is approximately 5kb in size.  

The observer started the experiment by writing 500 resources (i.e. 100% write) to the 

middleware before the connection is established between the mobile device and the middleware. 

The mobile device fetches the successfully created resources from the middleware using HTTP 

GET request. The time taken by the mobile device to read all the requests is recorded. The 

experiment is then repeated by creating 450 initial write requests (i.e. 90% write). The mobile 

device establishes the connection to start reading the resources while the Nodeload tool 

POST patientdb/1 HTTP/1.1 
Host: Semeru.usask.ca 
Content-Length: 94 
Content-Type: application/json 
 
{"First Name":"Richard", "Last Name":"Kwadzo", "Phone":"(306) 888 8888", 
"Email":”lomoteyr@myemail.com”,  “Address”:"103 Cumberland, Saskatoon SK", 
"Room Number":"345", "Top Diagnosis":"Malaria", "Doctor":"Dr. Richard J", "Age":70, 
"Emergency Contact”:"Dr. Shomo J", "_attachments":{"patient1-
002.jpg":{"content_type":"image/jpeg","revpos":3,"length":2077,"stub":true}}} 

 
Figure 5.13: Sample POST request to create a patient record 
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completes the remaining 50 write requests. The total time to read all the 500 requests is recorded. 

The experiment is repeated by reducing the initial write request while recording the total time to 

read all the requests as shown in Table 5.9. 

Table 5.9: Read and write mix 

Write Requests Read Requests 

500 (i.e. 100%) Start Reading 

450 (i.e. 90%) Start Reading 

400 (i.e. 80%) Start Reading 

350 (i.e. 70%) Start Reading 

300 (i.e. 60%) Start Reading 

250 (i.e. 50%) Start Reading 

200 (i.e. 40%) Start Reading 

150 (i.e. 30%) Start Reading 

100 (i.e. 20%) Start Reading 

50 (i.e. 10%) Start Reading 

0 (i.e.0%) Start Reading 

The experiment is repeated with the Erlang version of the middleware acting as the proxy 

between Nodeload and the mobile device. The result from the read and write mix experiment is 

presented in Table 5.10 below. The variables that are considered in this test are the mean 

inconsistency window, the maximum inconsistency window, and the minimum inconsistency 

window.  

Table 5.10: Result of the inconsistency window testing 

Middleware 

platform 

Mean 

inconsistency 

window (ms) 

Maximum 

inconsistency 

window (ms) 

Minimum 

inconsistency 

window (ms) 

CouchDB 94.95 165.60 25.00 

Erlang 90.11 160.20 18.40 

The graph in Figure 5.14 illustrates the durations for each round of the read/write mixed 

experiments using the two versions of the middleware as proxies. 
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Figure 5.14: Read and Write mixed requests 

From the graph, it can be inferred that it takes a longer duration for an update event to 

travel to the mobile client when the mobile device has to wait for more write requests. However, 

from the analysis, the average duration for 500 newly created resources to be visible to a 

connected client when the write request is routed through the CouchDB middleware is 0.095 

seconds. On the other hand, it will take approximately 0.090 seconds if the write request is 

routed through the Erlang middleware. The resulted inconsistency window suggests that the time 

for an update to move from one client through any of the middleware versions is relatively fast 

though the Erlang middleware minimizes latency better.  

However, a limitation of our read and write test is that; it did not take into account an 

HTTP PUT request. The PUT request is another form of a write operation that makes changes to 

an existing resource. Considering the fact that mobile client caching is proposed and 

implemented in our architecture, it will be interesting to know how the read and “update the 

existing resources” mix experiment can be employed to determine the inconsistency window. 
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The experiment will involve recording the duration it takes for the middleware to make changes 

to its resources. In addition, the updates will be sent to the mobile device which will also 

synchronize its cache with the new resources state. The entire duration for an update to be visible 

on all nodes will be the inconsistency window. Though the described scenario has not been 

evaluated in our system, it has been fully factored into the implementation. 

Another caveat with our approach is the continuous polling of the middleware from the 

mobile device. This consumes network bandwidth but the bandwidth consumption has not been 

evaluated in this thesis since it is not a major challenge under consideration. The next set of 

experiments focuses on how the implemented architecture responds to inputs and requests from 

users. The observer employ fault injection approaches as described in the next section. 

5.4 Fault Injection Approaches 

The fault injection testing is adopted to evaluate the resilience of our system. The test is 

suitable for the cases involving crashes and disconnections between the mobile client and the 

back-end components. The mobile provider and the requester are intentionally disconnected 

periodically whiles requests are sent from other requesters; and it is expected that the requester 

receives some message. The idea is that distribution transparency will be minimized in situations 

of long lived disconnection; with a clear message sent to the user. Distributed transparency is a 

way of hiding detailed abstraction of network components from the user. 

Also, the fault injection testing evaluates the efficiency of the mobile side caching in 

terms of supporting user mobility. As the mobile provider/requester is disconnected from the 

middleware, the last successful cached update on the client is expected to be pushed to the screen 

with a clear message of disconnection to the user. Timing will be used to provide a global world 

view of requests. It is also expected that updates are pushed to the client the moment 
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connectivity is restored using the long-polling technique. The various scenarios considered in the 

experiment are described in the cases in the next section. 

5.4.1 Case 1: Disconnected Provider 

The setup for the unavailable mobile service provider testing is shown in Figure 5.15. 

The experiment focuses on the responses of the middleware when the mobile provider is not 

available. At the beginning of the experiment, the Couchbase Mobile storage on the mobile 

provider is populated with 100 Web resources representing patients’ records. The CouchDB 

middleware connects to the Couchbase Mobile storage on the mobile provider and synchronizes 

the data. After the synchronization, the mobile provider is disconnected and an HTTP GET 

request is sent from the mobile requester to the disconnected provider through the middleware. 
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Figure 5.15 Disconnected mobile service provider 

The unavailable provider’s case is handled by the use of timestamps. The middleware 

sends a response to the mobile requester with the message of temporary unavailable message as 

shown in the screen shot below in Figure 5.16. Figure 5.17 shows the message from the 

middleware when the button labeled OK is clicked. Due to privacy in the E-health domain, the 

names and information showing on the device in Figure 5.16 and Figure 5.17 are not real patient 

and doctor’s information. 
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Figure 5.16: Temporary unavailable message 

 

 

Figure 5.17: Message from the middleware 
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5.4.2 Case 2: Disconnected Requester 

The experimental setup in Figure 5.18 illustrates the situation where a requester sends a 

request and could not get back the response because it lost connectivity.   

Tablet 1Requester Middleware

RR

D
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n
ec

te
d

Tablet 2
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Provider

 

Figure 5.18: Disconnected requester 

Currently the way this situation is addressed in our system is for the requester to re-

connect to the middleware and make the request again. Since the provider has responded to the 

request, it will be stored on the middleware. Hence, even though the requester has to make the 

request again, it will take a shorter time to serve the client based on the experimental results on 

resource accessibility on the middleware. 

5.4.3 Case 4: Disconnected Provider and Requester 

Case 4 is depicted in Figure 5.19. This is a situation where by the requester sends a 

request to the provider and the provider is unavailable. At the same time that the middleware is 

getting back to the requester with the unavailability message of the provider, the requester is also 

disconnected. When such a situation occurs in our system, the transaction is cancelled and not 

registered. 
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Figure 5.19: Both the requester and the provider are disconnected 

5.5 Summary 

This Chapter described the various experiments that were conducted to evaluate our 

system’s solutions to the challenges of latency and state synchronization management. The first 

part of the evaluation focused on the measurement of overhead introduced by the designed 

system on minimizing latency in a Wi-Fi network. The overhead testing employed simulation in 

a laboratory to determine how long it takes for data to be accessed on participating hosts. The 

evaluation focused mainly on requester-provider and requester/provider-middleware interactions. 

In addition, since the performance of systems slow down under heavy workloads, resulting in 

high latency, scalability testing was conducted.  

Furthermore, based on the adoption of the read-your-writes consistency model, the 

inconsistency window of the implemented system was determined by conducting read-write 

mixed experiment. Also, the fault injection approach was used to determine the responses of the 

middleware to certain events.  The summary of the experiments are listed below based on the 

goals.  

Goal 1: Testing resource accessibility on the resources’ hosts 

Experiment 1: Evaluated resource accessibility on the mobile provider over the 

CouchDB middleware. The result shows that for a maximum of 25 read requests in a 
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closed loop, the average response time for a requester to be served is approximately 0.5 

seconds. 

Experiment 2: Evaluated the accessibility of RESTful resources on the mobile service 

provider over the Erlang middleware. It takes approximately 0.56 seconds for a maximum 

of 25 sequential requests to be served in a closed loop. 

Experiment 3: Evaluated the accessibility of RESTful resources on the CouchDB 

middleware storage. On average, a maximum of 70 read requests are served in 

approximately 0.40 seconds 

Experiment 4: Evaluated the accessibility of RESTful resources on the Erlang DETS 

table by a mobile requester. The result shows that it takes approximately 0.37 seconds for 

a maximum of 70 sequential requests to be responded to. 

Goal 2: Scalability testing of the middleware platforms 

Experiment 5: The throughput of the CouchDB middleware was evaluated. Considering 

500 users of the system who can send concurrent HTTP GET requests ranging from 500 

to 40000, the CouchDB middleware processes an average of 124.23 requests per second. 

Experiment 6: The evaluation shows that the Erlang environment is more scalable than 

the CouchDB since it processes an average of 320.42 requests per second under the same 

conditions as the CouchDB. 

Goal 3: Determining the inconsistency window of our system 

This goal is evaluated based on the time it takes for all connected clients to have access to 

newly created resources that are propagated from the client to the middleware. The test 

employed the read-write mixed technique for 500 RESTful resources. The results show that, if 
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the CouchDB middleware is used, the inconsistency window is 0.095 seconds whereas if the 

Erlang middleware is employed, the inconsistency window is 0.090 seconds. 

 Goal 4: Fault injection approaches to determine system responses 

The evaluation takes into account failure events of participating mobile nodes. Assuming 

the provider is disconnected, the middleware pushes a cached resource to the requester with a 

temporary unavailable provider message. Also, in case the provider is reachable but the requester 

is disconnected before the response arrives, the requester is expected to re-connect.  Furthermore, 

if the provider and the requester are both disconnected, the system cancels the entire transaction. 
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CHAPTER 6 

SUMMARY AND CONTRIBUTION 

This thesis has shown that mobile devices such as smartphones, tablets, and notebooks 

can be hosts and providers of RESTful Web services in Enterprise Information Systems. Using 

REST as an architectural design, Web services can be efficiently built and deployed on these 

devices because REST is a lightweight protocol. However, there are challenges such as network 

latency and state change propagation in mobile distributed systems due to transient connectivity. 

In addition, the CAP theorem phenomenon is applicable in the mobile distributed environment. 

Out of the three system requirements - data consistency, system availability, and partition failure; 

only two can be simultaneously attained in a distributed system. The focus of our work is to 

ensure high availability so we traded-off data consistency since the unstable connectivity in 

mobile distributed systems enforces partition tolerance. Thus, the challenge is how to ensure 

eventual consistency.  

Our research addressed the challenges of latency and resources state management by 

proposing an architecture that comprises a mobile service requester, a middleware, and a mobile 

service provider. The mobile application’s user interface is implemented using HTML5 which 

enabled the building of a hybrid app (i.e. mobile web app that looks and functions as a native 

app). The choice of HTML5 is also influenced by the fact that we aimed to achieve deploying a 

single code base on multiple platforms. The application was successfully deployed on various 

platforms including BlackBerry Playbook, BlackBerry smartphone OS 5.0, and Android tablet. 

Also, in order to model the mobile device as a provider, Couchbase Mobile framework was 

configured and hosted on the Android tablet device which enabled an HTTP communication to 

be established between the mobile device and the middleware. As a result, requests can be sent to 

the mobile provider just as a server. By this approach, mobility of users is supported even if there 
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is loss of connectivity. The mobile provider’s records or messages can be updated by the user 

and when the connection is restored, the mobile side data will be synchronized with the cloud-

hosted middleware. Also, messages being sent to a disconnected mobile provider are queued on 

the middleware and upon establishing a connection, the middleware pushes the updates to the 

provider.     

Furthermore, two of the leading NoSQL frameworks, Erlang and CouchDB, were 

explored to determine which one supports the building of the middleware better. The middleware 

employed caching techniques and event notifications such as client connections, client 

disconnections, and resources state change; to update all participating mobile service requesters 

and providers. The middleware also uses long-polling and pushing to receive and send updates to 

mobile clients which have subscribed for services. In addition, the middleware is hosted on the 

Amazon EC2 cloud and all the REST Web resources of the mobile providers are replicated on 

the middleware to ensure high availability. An eventual consistency model following the read-

your writes consistency is employed to synchronize data between the middleware and the mobile 

participants.    

The contribution and the findings of our work are summarized below. 

 It is feasible to host providers and consumers of RESTful Web services on the mobile device 

in an enterprise domain. 

 The use of HTML5 and its supporting Web tech frameworks enhance the deployment of a 

hybrid mobile app. 
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 It is a good idea to replicate the RESTful resources of the mobile providers on a cloud 

hosted middleware. This is to aid mobile requesters to access the resources of a disconnected 

mobile provider. 

 Read-your-writes consistency approach can be adopted together with pushing and polling, in 

a mobile distributed network, to synchronize data in real time. 

 Though Erlang and CouchDB have good support for mobile devices in terms of acting as 

middleware, the Erlang platform is more scalable and has higher performance for 

minimizing latency.  

Though the goal of hosting providers and consumers of RESTful Web Services (REST-

WS) on the mobile device has been achieved, there are some limitations with our work.  In our 

architecture, a centralized middleware system was proposed without paying attention to the fault-

tolerance of such a system. Since the middleware acts like a hub in our system, the moment it 

crashes, no mobile provider can be reached by a requester. Though the choice of Erlang 

programming language and CouchDB is to ensure system resilience, it is not enough to 

overcome hardware failures. One approach to solving this problem could have been the adoption 

of database distribution on multiple computers. However, the overhead of this approach has to be 

evaluated to determine its viability.  

Also, enough attention is not given to data safety on the mobile provider; in case the 

mobile device gets into the wrong hands. Thus, in our future work, these factors will be 

considered. 
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CHAPTER 7 

FUTURE WORKS 

7.1 Mobile P2P Provisioning 

The work presented in this thesis focuses on using a middleware in a centralized 

distributed system to support the communication of the mobile hosts of RESTful Web services. 

The middleware keeps track of updates that are being propagated from the mobile participants by 

listening to events such as resources state change. Additionally, the middleware notifies all the 

mobile participants of possible updates in real time.  

Provider

Provider

SMP

Laptop

Provider

Provider

Provider

SMP

Laptop

Provider

 

Figure 7.1: Network of mobile providers and consumers  

However, in the future, we hope to investigate the possibility of sharing Web resources 

between mobile participants without using a centralized middleware that is hosted in a wired 

network. Rather, the mobile participants could be modeled to communicate directly in a peer-to-

peer (P2P) environment. The P2P approach means that individual mobile providers’ resources 
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will be stored by other providers as illustrated in Figure 7.1 in order to increase resources 

availability.  

The challenge however in the P2P approach is how to ensure the reliability of the data 

that is being kept by a neighboring provider. The reliability problem arises because of the 

intermittent loss of connectivity between the mobile devices. As a result, mobile devices could 

potentially be hosting resources that are outdated and tracking the updates of users when the 

mobile distributed system is large can be challenging. Additionally, assuming a mobile provider, 

HostA, has its replica resources stored on a neighboring provider, HostB, there are chances that 

both HostA and HostB could be unreachable simultaneously. This situation could lead to total 

unavailability of services or Web resources.  

A possible solution for mobile hosting in P2P environment could be the use of an audit 

trail and timestamps techniques. As the mobile providers are sharing their resources, the changes 

that are being done by users to resources could be logged. The users who are doing the changes 

and the times at which the changes are made could also be recorded. With the audit trail concept, 

reliability of the data could be determined. 

7.2 Decision Tracking in Mobile Provisioning Systems  

In our present studies, the focus is on the availability and the reliability of the data that is 

shared between the mobile participants. Thus, the architecture employs the Level 1 and part of 

Level 2 of the Richardson’s Maturity Model. As a result, the mobile participants interact with 

multiple Web resources of the provider using the HTTP methods such as GET, POST, and PUT. 

However, the issue of Web services modeling can become more complex than just 

sharing data especially in Enterprise Information Systems such as E-health. In our current 

architecture, when an update is pushed to a mobile participant, say updated patients’ 
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demographic record, the decision about how to use the data is made by the human expert (i.e. the 

health care professional). This means that the mobile providers just deliver readings to the 

human experts. The situation becomes complex if decision making is introduced into the system 

where for instance, previous decisions are reversed based on inferred data.  A potential data 

inference scenario in the E-health domain could be seen when a systems’ decision is based on 

blood test result from the laboratory. Assuming a decision is made based on an earlier result and 

then a new result arrives from the lab but the intended provider is temporary disconnected; 

whenever the provider becomes available, it has to make a new decision based on the new result. 

The scenario is further explained in Figure 7.2 when timestamps are employed.  

Provider 1 Middleware

Service1 = D, at 10:00 am Service1 = A, at 9:50 am

Service1 = B, at 10:20 am

Service1 = C, at 10:25 am

Service2 = D, at 10:22 am

Req/res

 

Figure 7.2: Decision making based on timestamps 

As illustrated in Figure 7.2, the state of a service on the middleware, say Service1 is A at 

9:50 am. When the provider connects to the middleware 10 minutes later, the provider could 

make a decision D based on the available service. Assuming Service1 is updated at 10:20 am to 

state B on the middleware, then based on the new state, the provider has to make a new decision. 

In non-monotonic systems, a new service state could potentially lead to totally different decision 

from earlier decisions. Furthermore, the case could be complicated if for instance, the provider 

later connects at 10:22 am to make a decision D based a new service say Servcie2. Based on 
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Service2, the provider could request for Service1 to be updated to C on the middleware. The 

complexity further increases if multiple services are being created based on inferred data. Since 

connectivity is not guaranteed, different service states could arrive on the middleware without 

the provider knowing. In addition, based on a new state of a service, a ripple effect could be 

triggered where by previous decisions in the system has to be reversed. Also, there could be 

cascading effect where based on a new service state from the provider, other mobile participants 

have to update their services as well. 

A possible solution to addressing the above system complexities could be the adoption of 

autonomic computing [84] technology. Proposed by IBM, the concept of autonomic computing is 

to build highly distributed systems that manage themselves. Thus, such systems are expected to 

make decisions and recover from system failures without human interventions.  Regarding 

mobile provisioning systems, the autonomic computing technique could be employed to enable 

decision tracking. The system could be built with audit trail mechanisms and timestamps; in 

which case users’ activities could be logged in a file. Rules could also be introduced based on the 

timings of the resources state changes. A simple rule could state that if resources state change is 

detected by the provider, all the services in the log file should be re-run.   

Furthermore, the adoption of the autonomic computing technique in mobile Web hosting 

could follow the proposed framework of Rahman et al. [85] as illustrated in Figure 7.3.  
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Figure 7.3: Decentralized autonomic workflow management [85] 

Rahman et al. [85] in their paper “An Autonomic Workflow Management System for 

Global Grids”, put forward the use of autonomic computing framework that manages workflows 

in dynamic network environments. To achieve this, the authors design a Grid Federation Agent 

(GFA) at every node (called Grid site) that logs the users’ execution of the application’s 

workflow. Furthermore, each GFA has its own autonomic component (AC) that self-manages the 

activities on the node. The AC performs actions such as workflow execution monitoring, data 

analyzing, planning against possible failures, and application execution. As a result, the paper 

reported the success of building autonomic system that is able to react according to changes in 

the dynamic network, self-heal from failures, and discover services.  

Although Rahman et al. [85] implemented the framework in Grid environment, future 

studies on mobile provisioning could adopt the idea to overcome the challenges of decision 
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making. Since there are challenges of network loss in mobile networks, the provider could be 

modeled to have an autonomic component (AC) with the properties shown in Figure 7.3.    

7.3 Data Security on the Mobile Host 

Now that Web services can be hosted on the mobile devices, another concern that will be 

addressed in our future studies is the security and privacy of the data. Mobile devices are 

personal assets and when used in hosting enterprise applications can contain non-disclosure 

information. Hence, it is important that best security practices and techniques are explored to 

ensure data safety. In addition, the issue that our further studies will investigate is how to 

determine the access levels of users on the mobile hosts. In most enterprises, information and 

data accessibility is maintained in a hierarchical order. It is therefore a challenge to determine the 

access levels across multiple mobile hosts.  

Atluri [86] presents a security outline for workflow systems in Enterprise Information 

Systems. According to Atluri [86], security concerns that must be addressed in Workflow 

Management Systems include the following. 

 Confidentiality  

 Integrity  

 Availability  

 Authentication  

 Authorization:  

 Audit 

 Anonymity  

 Separation of duties  
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Based on the security factors outlined above, further studies on mobile Web services 

provisioning could possibly adapt the Workflow Authorization Model (WAM) proposed by 

Atluri [86]. In the model, authorized users or agents (called subjects) are given certain access 

levels (called privileges) to perform operations (called objects).  Also the WAM framework 

gives access to a subject only at run-time by employing Authorization Templates (AT) which is 

attached to each activity. By this approach, authorization is granted at the beginning of an 

activity execution and it is revoked when the activity is complete.  

Future exploration of security issues in mobile hosting of enterprise information could 

employ the idea of Authorization Templates to enforce access level privileges. For example, in 

the E-health domain, health care professionals could have ATs attached to individual clinical 

activities though they may be using the same application interface. A potential clinical workflow 

process is graphically depicted in Figure 7.4 based on the WAM framework of Atluri [86].  

Take blood sample

T1

(nurse, blood_sample, take, (10, 15))

Examine blood 
sample

(lab_tech, blood_sample, examine, (15, 45))

T2

Diagnose ailment  
based on lab result

(doctor, blood_sample, diagnosis, (45, 60))

T3

 

Figure 7.4: Clinical Workflow Authorization Model 

From Figure 7.4, assuming an activity, T1, is defined as taking a patient’s blood sample 

by a nurse, the system could give an access level (privilege) that allows for the information 

regarding the patient to be registered and possibly notify the laboratory technician of the activity. 

The nurse’s activity could start from say time 10 and finish at time 15, after which the nurse’s 

privilege should be revoked.  A rule could be introduced into the system which states that the 
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next activities say T2 and T3 could be performed if and only if the first activity, which is T1, is 

successful. Based on this rule, after the successful completion of T1, the laboratory technician 

could be given the privilege to record the results, T2, after examining the blood sample. The 

activity of the laboratory technician could start from time 15 and end at time 45 after which the 

privilege could be revoked. The successful completion of T2 could lead to the initialization of 

T3, which is the activity of the doctor, which involves recording the diagnosis of the ailment 

based on the lab result. The doctor could also have additional privileges of writing prescriptions 

for the patient as well.  

Now, considering the authorization control flow described within the E-health domain, 

the case of unauthorized disclosure of information and unauthorized changes of data could be 

avoided. Additionally, the authorization flow leads to clear separation of duties since users are 

given privileges that are only related to their activities.  

However, the WAM framework could become inefficient in mobile distributed 

environments as a result of unexpected losses in connectivity. There could be cases where the lab 

technician is unreachable after the completion of T1 or the doctor could be temporality 

disconnected at the time T2 is completed. The challenge therefore is how to initialize the next 

activity. To overcome such problems, the system could be designed to revisit previous states. For 

example, if the doctor is not sure that T2 is completed successfully; the workflow could be 

reversed to activity T2 for an acknowledgement (or confirmation).   

7.4 Resilient Mobile Hosting 

Apart from the security concerns, another research that is worth exploring in the future is 

building resilient frameworks that support enterprise data hosting on mobile devices. Fault-

tolerance (also often called graceful degradation) is an attribute of a computer system that 
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enforces service delivery to users or sub-system components in case of system failures [87]. In 

the architecture proposed in this thesis, the Web resources replication technique is employed 

which is helpful for data recovery in the event that a mobile device becomes faulty. However, 

issues concerning errors in the decision making workflow are ignored since it is outside the 

scope of this thesis. 

Errors in decision making workflows are bound in mobile environments due to unstable 

connectivity. As a result, the coordination of activity workflows cannot be guaranteed at all 

times. For example, in an enterprise system such as E-health, the following scenario could be 

used to define a workflow for the University of Saskatchewan Health Center.  

1. The medical staff at the front desk records or verifies the patient’s demographic 

record including authenticating the patient’s health insurance card and notifies a 

nurse. 

2. The nurse meets with the patient and asks basic questions to understand what is wrong 

with the patient. After which the nurse notifies the doctor (or the expert) on duty. All 

the interactions between the patient and the nurse are recorded in the computer system 

as well.   

3. The doctor meets the patient and interacts with the patient and may conduct physical 

examination to determine what is wrong with the patient. The doctor also has to log 

every interaction with the patient in the computer system.  

4. The doctor could recommend the patient to go for lab test after which the lab 

technician has to document or record the lab result.  

4. The lab result is then sent back to the doctor who has to do diagnosis based on the lab 

result and give prescriptions (this activity has to be recorded as well). 
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As illustrated in the above scenario, the doctor can only give prescriptions or diagnose a 

patient’s ailment based on the result from the lab. However, if the process flow is implemented 

in mobile networks, there could be cases where the lab result will not reach the doctor on time 

(or at all) due to factors such as unexpected shutdown (due to limited battery life), latency, and 

hardware failure. Thus, it is essential that the mobile hosting environment is resilient enough to 

provide a consistent workflow for the health care professionals even in cases of failures.   

In order to enforce resilient job execution process flow, Dasgupta et al [87] present a grid 

environment workflow manager that supports graceful degradation. First, the paper presents the 

various forms of workflow patterns based on Web Services Business Process Execution 

Language (WS-BPEL), which are graphically illustrated in Figure 7.5. The workflow could be 

executed in sequence, in parallel, in a loop, and choice.  

 

Figure 7.5: Basic workflow patterns described in [87]: (i) sequential, (ii) parallelism, (iii) loop, and (iv) choice.  

Based on the basic workflow patterns, Dasgupta et al [87] proposed a framework that 

supports system error recovery regardless of the adopted workflow pattern. The job flow 

execution pattern is illustrated in Figure 7.6 as a state transition diagram. 
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Figure 7.6: Normal job-flow patterns [87] 

In the proposed framework of Dasgupta et al [87] as shown in Figure 7.6, every 

transaction starts with data staging - which is an input from users or sub system component. The 

staged data is then sent to submitted state for processing. A submitted job could either be polled 

to determine the status (e.g. is the job completed or not) or notifications could be used to 

determine the status of the job. All completed jobs are forwarded to the completed state which 

could become a staged data for the next process or user who needs that information as an input. 

Also, a failed state is defined where failure attempts at other states are logged. For example, if 

there is fault at the submission stage, the job will be re-submitted as shown in Figure 7.7. 

Whenever a job is re-submitted, the status of the job will be re-polled or re-registration has to be 

done for job status notifications. Forced-fail status means that the transaction is terminated. 
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Figure 7.7: Re-submit job pattern [87]  

The future studies on resilient mobile hosting of Web services could adopt the fault-

tolerance framework of Dasgupta et al [87]. In that case, errors in transactional workflows could 

be registered for callbacks. Considering the E-health scenario for instance, if there is failure in 

the submission of the lab result from the lab technician due to system errors, the result could be 

re-submitted. 
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APPENDIX  

Asynchronous Messaging: This is a message exchanging system where participants don't have 

to wait for a response from the recipient, because they can rely on the messaging infrastructure to 

ensure delivery. The alternative is synchronous messaging. 

Composite Web services: An aggregation of multiple other elementary and composite Web 

services, which interact according to a given process model. 

Distributed Systems: Multiple computers that interact among themselves via a computer 

network. 

Distribution Transparency: Hiding the technical and network level details from the user and 

presenting the entire system as a single component rather than showing all functioning 

components. 

E-Health: A study that use information and communication technology mostly with the aid of 

the Internet; to support the safe delivery of health care services.  

Heterogeneous Web services: The description of the generic Web services that centered on 

SOAP, REST, WSDL and UDDI.  

Middleware: Software consisting of a set of services that enables multiple processes running on 

one or more machines to communicate. 

Mobile participants: All the mobile service requesters and mobile service providers that have 

subscribed to services on the middleware. 

Proxy: Intermediary server that acts between the client and the server. 

Web server: Hardware or software that holds and deliver Web content to clients via the Internet. 
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