39,366 research outputs found

    Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings

    Full text link
    Conventional feature-based and model-based gaze estimation methods have proven to perform well in settings with controlled illumination and specialized cameras. In unconstrained real-world settings, however, such methods are surpassed by recent appearance-based methods due to difficulties in modeling factors such as illumination changes and other visual artifacts. We present a novel learning-based method for eye region landmark localization that enables conventional methods to be competitive to latest appearance-based methods. Despite having been trained exclusively on synthetic data, our method exceeds the state of the art for iris localization and eye shape registration on real-world imagery. We then use the detected landmarks as input to iterative model-fitting and lightweight learning-based gaze estimation methods. Our approach outperforms existing model-fitting and appearance-based methods in the context of person-independent and personalized gaze estimation

    Pigment Melanin: Pattern for Iris Recognition

    Full text link
    Recognition of iris based on Visible Light (VL) imaging is a difficult problem because of the light reflection from the cornea. Nonetheless, pigment melanin provides a rich feature source in VL, unavailable in Near-Infrared (NIR) imaging. This is due to biological spectroscopy of eumelanin, a chemical not stimulated in NIR. In this case, a plausible solution to observe such patterns may be provided by an adaptive procedure using a variational technique on the image histogram. To describe the patterns, a shape analysis method is used to derive feature-code for each subject. An important question is how much the melanin patterns, extracted from VL, are independent of iris texture in NIR. With this question in mind, the present investigation proposes fusion of features extracted from NIR and VL to boost the recognition performance. We have collected our own database (UTIRIS) consisting of both NIR and VL images of 158 eyes of 79 individuals. This investigation demonstrates that the proposed algorithm is highly sensitive to the patterns of cromophores and improves the iris recognition rate.Comment: To be Published on Special Issue on Biometrics, IEEE Transaction on Instruments and Measurements, Volume 59, Issue number 4, April 201

    Automatic facial analysis for objective assessment of facial paralysis

    Get PDF
    Facial Paralysis is a condition causing decreased movement on one side of the face. A quantitative, objective and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents an approach based on the automatic analysis of patient video data. Facial feature localization and facial movement detection methods are discussed. An algorithm is presented to process the optical flow data to obtain the motion features in the relevant facial regions. Three classification methods are applied to provide quantitative evaluations of regional facial nerve function and the overall facial nerve function based on the House-Brackmann Scale. Experiments show the Radial Basis Function (RBF) Neural Network to have superior performance

    SHE based Non Interactive Privacy Preserving Biometric Authentication Protocols

    Get PDF
    Being unique and immutable for each person, biometric signals are widely used in access control systems. While biometric recognition appeases concerns about password's theft or loss, at the same time it raises concerns about individual privacy. Central servers store several enrolled biometrics, hence security against theft must be provided during biometric transmission and against those who have access to the database. If a server's database is compromised, other systems using the same biometric templates could also be compromised as well. One solution is to encrypt the stored templates. Nonetheless, when using traditional cryptosystem, data must be decrypted before executing the protocol, leaving the database vulnerable. To overcame this problem and protect both the server and the client, biometrics should be processed while encrypted. This is possible by using secure two-party computation protocols, mainly based on Garbled Circuits (GC) and additive Homomorphic Encryption (HE). Both GC and HE based solutions are efficient yet interactive, meaning that the client takes part in the computation. Instead in this paper we propose a non-interactive protocol for privacy preserving biometric authentication based on a Somewhat Homomorphic Encryption (SHE) scheme, modified to handle integer values, and also suggest a blinding method to protect the system from spoofing attacks. Although our solution is not as efficient as the ones based on GC or HE, the protocol needs no interaction, moving the computation entirely on the server side and leaving only inputs encryption and outputs decryption to the client

    On Acquisition and Analysis of a Dataset Comprising of Gait, Ear and Semantic data

    No full text
    In outdoor scenarios such as surveillance where there is very little control over the environments, complex computer vision algorithms are often required for analysis. However constrained environments, such as walkways in airports where the surroundings and the path taken by individuals can be controlled, provide an ideal application for such systems. Figure 1.1 depicts an idealised constrained environment. The path taken by the subject is restricted to a narrow path and once inside is in a volume where lighting and other conditions are controlled to facilitate biometric analysis. The ability to control the surroundings and the flow of people greatly simplifes the computer vision task, compared to typical unconstrained environments. Even though biometric datasets with greater than one hundred people are increasingly common, there is still very little known about the inter and intra-subject variation in many biometrics. This information is essential to estimate the recognition capability and limits of automatic recognition systems. In order to accurately estimate the inter- and the intra- class variance, substantially larger datasets are required [40]. Covariates such as facial expression, headwear, footwear type, surface type and carried items are attracting increasing attention; although considering the potentially large impact on an individuals biometrics, large trials need to be conducted to establish how much variance results. This chapter is the first description of the multibiometric data acquired using the University of Southampton's Multi-Biometric Tunnel [26, 37]; a biometric portal using automatic gait, face and ear recognition for identification purposes. The tunnel provides a constrained environment and is ideal for use in high throughput security scenarios and for the collection of large datasets. We describe the current state of data acquisition of face, gait, ear, and semantic data and present early results showing the quality and range of data that has been collected. The main novelties of this dataset in comparison with other multi-biometric datasets are: 1. gait data exists for multiple views and is synchronised, allowing 3D reconstruction and analysis; 2. the face data is a sequence of images allowing for face recognition in video; 3. the ear data is acquired in a relatively unconstrained environment, as a subject walks past; and 4. the semantic data is considerably more extensive than has been available previously. We shall aim to show the advantages of this new data in biometric analysis, though the scope for such analysis is considerably greater than time and space allows for here

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160
    • …
    corecore