5 research outputs found

    The principle of pointfree continuity

    Full text link
    In the setting of constructive pointfree topology, we introduce a notion of continuous operation between pointfree topologies and the corresponding principle of pointfree continuity. An operation between points of pointfree topologies is continuous if it is induced by a relation between the bases of the topologies; this gives a rigorous condition for Brouwer's continuity principle to hold. The principle of pointfree continuity for pointfree topologies S\mathcal{S} and T\mathcal{T} says that any relation which induces a continuous operation between points is a morphism from S\mathcal{S} to T\mathcal{T}. The principle holds under the assumption of bi-spatiality of S\mathcal{S}. When S\mathcal{S} is the formal Baire space or the formal unit interval and T\mathcal{T} is the formal topology of natural numbers, the principle is equivalent to spatiality of the formal Baire space and formal unit interval, respectively. Some of the well-known connections between spatiality, bar induction, and compactness of the unit interval are recast in terms of our principle of continuity. We adopt the Minimalist Foundation as our constructive foundation, and positive topology as the notion of pointfree topology. This allows us to distinguish ideal objects from constructive ones, and in particular, to interpret choice sequences as points of the formal Baire space

    Inductive and Coinductive Topological Generation with Church's thesis and the Axiom of Choice

    Get PDF
    Here we consider an extension MFcind of the Minimalist Foundation MF for predicative constructive mathematics with the addition of inductive and coinductive definitions sufficient to generate Sambin's Positive topologies, i.e. Martin-L\"of-Sambin formal topologies equipped with a Positivity relation (used to describe pointfree formal closed subsets). In particular the intensional level of MFcind, called mTTcind, is defined by extending with coinductive definitions another theory mTTind extending the intensional level mTT of MF with the sole addition of inductive definitions. In previous work we have shown that mTTind is consistent with Formal Church's Thesis CT and the Axiom of Choice AC via an interpretation in Aczel's CZF+REA. Our aim is to show the expectation that the addition of coinductive definitions to mTTind does not increase its consistency strength by reducing the consistency of mTTcind+CT+AC to the consistency of CZF+REA through various interpretations. We actually reach our goal in two ways. One way consists in first interpreting mTTcind+CT+AC in the theory extending CZF with the Union Regular Extension Axiom, REA_U, a strengthening of REA, and the Axiom of Relativized Dependent Choice, RDC. The theory CZF+REA_U+RDC is then interpreted in MLS*, a version of Martin-L\"of's type theory with Palmgren's superuniverse S. A last step consists in interpreting MLS* back into CZF+REA. The alternative way consists in first interpreting mTTcind+AC+CT directly in a version of Martin-L\"of's type theory with Palmgren's superuniverse extended with CT, which is then interpreted back to CZF+REA. A key benefit of the first way is that the theory CZF+REA_U+RDC also supports the intended set-theoretic interpretation of the extensional level of MFcind. Finally, all the theories considered, except mTTcind+AC+CT, are shown to be of the same proof-theoretic strength.Comment: arXiv admin note: text overlap with arXiv:1905.1196

    Inductive and Coinductive Topological Generation with Church's thesis and the Axiom of Choice

    Get PDF
    In this work we consider an extension MFcind of the Minimalist Foundation MF for predicative constructive mathematics with the addition of inductive and coinductive definitions sufficient to generate Sambin's Positive topologies, namely Martin-Löf-Sambin formal topologies equipped with a Positivity relation (used to describe pointfree formal closed subsets). In particular the intensional level of MFcind, called mTTcind, is defined by extending with coinductive definitions another theory mTTind extending the intensional level mTT of MF with the sole addition of inductive definitions. In previous work we have shown that mTTind is consistent with Formal Church's Thesis CT and the Axiom of Choice AC via an interpretation in Aczel's CZF+REA. Our aim is to show the expectation that the addition of coinductive definitions to mTTind does not increase its consistency strength by reducing the consistency of mTTcind+CT+AC to the consistency of CZF+REA through various interpretations. We actually reach our goal in two ways. One way consists in first interpreting mTTcind+CT+AC in the theory extending CZF with the Union Regular Extension Axiom, REA_U, a strengthening of REA, and the Axiom of Relativized Dependent Choice, RDC. The theory CZF+REA_U+RDC is then interpreted in MLS*, a version of Martin-Löf's type theory with Palmgren's superuniverse S. A last step consists in interpreting MLS* back into CZF+REA. The alternative way consists in first interpreting mTTcind+AC+CT directly in a version of Martin-Löf's type theory with Palmgren's superuniverse extended with CT, which is then interpreted back to CZF+REA. A key benefit of the first way is that the theory CZF+REA_U+RDC also supports the intended set-theoretic interpretation of the extensional level of MFcind. Finally, all the theories considered, except mTTcind+AC+CT, are shown to be of the same proof-theoretic strength

    Inductive and Coinductive Topological Generation with Church's thesis and the Axiom of Choice

    Get PDF
    In this work we consider an extension MFcind of the Minimalist Foundation MF for predicative constructive mathematics with the addition of inductive and coinductive definitions sufficient to generate Sambin's Positive topologies, namely Martin-L\"of-Sambin formal topologies equipped with a Positivity relation (used to describe pointfree formal closed subsets). In particular the intensional level of MFcind, called mTTcind, is defined by extending with coinductive definitions another theory mTTind extending the intensional level mTT of MF with the sole addition of inductive definitions. In previous work we have shown that mTTind is consistent with Formal Church's Thesis CT and the Axiom of Choice AC via an interpretation in Aczel's CZF+REA. Our aim is to show the expectation that the addition of coinductive definitions to mTTind does not increase its consistency strength by reducing the consistency of mTTcind+CT+AC to the consistency of CZF+REA through various interpretations. We actually reach our goal in two ways. One way consists in first interpreting mTTcind+CT+AC in the theory extending CZF with the Union Regular Extension Axiom, REA_U, a strengthening of REA, and the Axiom of Relativized Dependent Choice, RDC. The theory CZF+REA_U+RDC is then interpreted in MLS*, a version of Martin-L\"of's type theory with Palmgren's superuniverse S. A last step consists in interpreting MLS* back into CZF+REA. The alternative way consists in first interpreting mTTcind+AC+CT directly in a version of Martin-L\"of's type theory with Palmgren's superuniverse extended with CT, which is then interpreted back to CZF+REA. A key benefit of the first way is that the theory CZF+REA_U+RDC also supports the intended set-theoretic interpretation of the extensional level of MFcind. Finally, all the theories considered, except mTTcind+AC+CT, are shown to be of the same proof-theoretic strength

    The principle of pointfree continuity

    No full text
    In the setting of constructive pointfree topology, we introduce a notion of continuous operation between pointfree topologies and the corresponding principle of pointfree continuity. An operation between points of pointfree topologies is continuous if it is induced by a relation between the bases of the topologies; this gives a rigorous condition for Brouwer's continuity principle to hold. The principle of pointfree continuity for pointfree topologies S\mathcal{S} and T\mathcal{T} says that any relation which induces a continuous operation between points is a morphism from S\mathcal{S} to T\mathcal{T}. The principle holds under the assumption of bi-spatiality of S\mathcal{S}. When S\mathcal{S} is the formal Baire space or the formal unit interval and T\mathcal{T} is the formal topology of natural numbers, the principle is equivalent to spatiality of the formal Baire space and formal unit interval, respectively. Some of the well-known connections between spatiality, bar induction, and compactness of the unit interval are recast in terms of our principle of continuity. We adopt the Minimalist Foundation as our constructive foundation, and positive topology as the notion of pointfree topology. This allows us to distinguish ideal objects from constructive ones, and in particular, to interpret choice sequences as points of the formal Baire space
    corecore