269,684 research outputs found
The Complementary Brain: From Brain Dynamics To Conscious Experiences
How do our brains so effectively achieve adaptive behavior in a changing world? Evidence is reviewed that brains are organized into parallel processing streams with complementary properties. Hierarchical interactions within each stream and parallel interactions between streams create coherent behavioral representations that overcome the complementary deficiencies of each stream and support unitary conscious experiences. This perspective suggests how brain design reflects the organization of the physical world with which brains interact, and suggests an alternative to the computer metaphor suggesting that brains are organized into independent modules. Examples from perception, learning, cognition, and action are described, and theoretical concepts and mechanisms by which complementarity is accomplished are summarized.Defense Advanced Research Projects and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-1-0657
Visual Acquaintance, Action & The Explanatory Gap
Much attention has recently been paid to the idea, which I label ‘External World Acquaintance’ (EWA), that the phenomenal character of perceptual experience is partially constituted by external features. One motivation for EWA which has received relatively little discussion is its alleged ability to help deal with the ‘Explanatory Gap’ (e.g. Fish 2008, 2009, Langsam 2011, Allen 2016). I provide a reformulation of this general line of thought, which makes clearer how and when EWA could help to explain the specific phenomenal nature of visual experience. In particular, I argue that by focusing on the different kinds of perceptual actions that are available in the case of visual spatial vs. colour perception, we get a natural explanation for why we should expect the specific nature of colour phenomenology to remain less readily intelligible than the specific nature of visual spatial phenomenology
Off the Grid
Off the Grid explores the messy relationship between public and private perceptions of our urban spaces, especially the tensions created when lived experience runs up against the physical and conceptual networks of cities: street grids, construction tape, and property lines. Incorporating different modes of spatial representation, from cartographic diagrams to isometric illustrations and Renaissance perspectives, this exhibition examines the role drawing plays in how we conceptualize the divisions and definitions of everyday space. The drawings engage the often overlooked detritus of city life, from layers of old graffiti to overgrown dirt piles and unmoored electrical wiring, that complicate our understanding of how urban space is actually used. Drawn from the spaces surrounding the artist’s daily routine, Off the Grid investigates the potential of a subjective cartography to tell a more complete story about the places we inhabit
A geometric network model of intrinsic grey-matter connectivity of the human brain
Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuro- science is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections
Neural Models of Motion Integration, Segmentation, and Probablistic Decision-Making
When brain mechanism carry out motion integration and segmentation processes that compute unambiguous global motion percepts from ambiguous local motion signals? Consider, for example, a deer running at variable speeds behind forest cover. The forest cover is an occluder that creates apertures through which fragments of the deer's motion signals are intermittently experienced. The brain coherently groups these fragments into a trackable percept of the deer in its trajectory. Form and motion processes are needed to accomplish this using feedforward and feedback interactions both within and across cortical processing streams. All the cortical areas V1, V2, MT, and MST are involved in these interactions. Figure-ground processes in the form stream through V2, such as the seperation of occluding boundaries of the forest cover from the boundaries of the deer, select the motion signals which determine global object motion percepts in the motion stream through MT. Sparse, but unambiguous, feauture tracking signals are amplified before they propogate across position and are intergrated with far more numerous ambiguous motion signals. Figure-ground and integration processes together determine the global percept. A neural model predicts the processing stages that embody these form and motion interactions. Model concepts and data are summarized about motion grouping across apertures in response to a wide variety of displays, and probabilistic decision making in parietal cortex in response to random dot displays.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
Background-Independence
Intuitively speaking, a classical field theory is background-independent if
the structure required to make sense of its equations is itself subject to
dynamical evolution, rather than being imposed ab initio. The aim of this paper
is to provide an explication of this intuitive notion. Background-independence
is not a not formal property of theories: the question whether a theory is
background-independent depends upon how the theory is interpreted. Under the
approach proposed here, a theory is fully background-independent relative to an
interpretation if each physical possibility corresponds to a distinct spacetime
geometry; and it falls short of full background-independence to the extent that
this condition fails.Comment: Forthcoming in General Relativity and Gravitatio
Towards a Theory of the Laminar Architecture of Cerebral Cortex: Computational Clues from the Visual System
One of the most exciting and open research frontiers in neuroscience is that of seeking to understand the functional roles of the layers of cerebral cortex. New experimental techniques for probing the laminar circuitry of cortex have recently been developed, opening up novel opportunities for investigating ho1v its six-layered architecture contributes to perception and cognition. The task of trying to interpret this complex structure can be facilitated by theoretical analyses of the types of computations that cortex is carrying out, and of how these might be implemented in specific cortical circuits. We have recently developed a detailed neural model of how the parvocellular stream of the visual cortex utilizes its feedforward, feedback, and horizontal interactions for purposes of visual filtering, attention, and perceptual grouping. This model, called LAMINART, shows how these perceptual processes relate to the mechanisms which ensure stable development of cortical circuits in the infant, and to the continued stability of learning in the adult. The present article reviews this laminar theory of visual cortex, considers how it may be generalized towards a more comprehensive theory that encompasses other cortical areas and cognitive processes, and shows how its laminar framework generates a variety of testable predictions.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-0409); National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-92-1-1309, N00014-95-1-0657
Observations on interfacing loop quantum gravity with cosmology
Indexación: Web of Science; Scopus.A simple idea of relating the loop quantum gravity (LQG) and loop quantum cosmology (LQC) degrees of freedom is introduced and used to define a relatively robust interface between these theories in context of toroidal Bianchi I model. The idea is an expansion of the construction originally introduced by Ashtekar and Wilson-Ewing and relies on explicit averaging of a certain subclass of spin networks over the subgroup of the diffeomorphisms remaining after the gauge fixing used in homogeneous LQC. It is based on the set of clearly defined principles and thus is a convenient tool to control the emergence and behavior of the cosmological degrees of freedom in studies of dynamics in canonical LQG. The constructed interface is further adapted to isotropic spacetimes. Relating the proposed LQG-LQC interface with some results on black hole entropy suggests a modification to the area gap value currently used in LQC.https://journals.aps.org/prd/pdf/10.1103/PhysRevD.92.12402
- …
