8,346 research outputs found

    About compositional analysis of pi-calculus processes

    Get PDF
    We set up a logical framework for the compositional analysis of finite pi-calculus processes. In particular, we extend the partial model checking techniques developed for value passing process algebras to a nominal calculus, i.e. the pi-calculus. The logic considered is an adaptation of the ambient logic to the pi-calculus. As one of the possible applications, we show that our techniques may be used to study interesting security properties as confidentiality for (finite) pi-calculus processes

    Psi-calculi: a framework for mobile processes with nominal data and logic

    Get PDF
    The framework of psi-calculi extends the pi-calculus with nominal datatypes for data structures and for logical assertions and conditions. These can be transmitted between processes and their names can be statically scoped as in the standard pi-calculus. Psi-calculi can capture the same phenomena as other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, the concurrent constraint pi-calculus, and calculi with polyadic communication channels or pattern matching. Psi-calculi can be even more general, for example by allowing structured channels, higher-order formalisms such as the lambda calculus for data structures, and predicate logic for assertions. We provide ample comparisons to related calculi and discuss a few significant applications. Our labelled operational semantics and definition of bisimulation is straightforward, without a structural congruence. We establish minimal requirements on the nominal data and logic in order to prove general algebraic properties of psi-calculi, all of which have been checked in the interactive theorem prover Isabelle. Expressiveness of psi-calculi significantly exceeds that of other formalisms, while the purity of the semantics is on par with the original pi-calculus.Comment: 44 page

    Formalising the pi-calculus using nominal logic

    Get PDF
    We formalise the pi-calculus using the nominal datatype package, based on ideas from the nominal logic by Pitts et al., and demonstrate an implementation in Isabelle/HOL. The purpose is to derive powerful induction rules for the semantics in order to conduct machine checkable proofs, closely following the intuitive arguments found in manual proofs. In this way we have covered many of the standard theorems of bisimulation equivalence and congruence, both late and early, and both strong and weak in a uniform manner. We thus provide one of the most extensive formalisations of a process calculus ever done inside a theorem prover. A significant gain in our formulation is that agents are identified up to alpha-equivalence, thereby greatly reducing the arguments about bound names. This is a normal strategy for manual proofs about the pi-calculus, but that kind of hand waving has previously been difficult to incorporate smoothly in an interactive theorem prover. We show how the nominal logic formalism and its support in Isabelle accomplishes this and thus significantly reduces the tedium of conducting completely formal proofs. This improves on previous work using weak higher order abstract syntax since we do not need extra assumptions to filter out exotic terms and can keep all arguments within a familiar first-order logic.Comment: 36 pages, 3 figure

    Rule Formats for Nominal Process Calculi

    Get PDF
    The nominal transition systems (NTSs) of Parrow et al. describe the operational semantics of nominal process calculi. We study NTSs in terms of the nominal residual transition systems (NRTSs) that we introduce. We provide rule formats for the specifications of NRTSs that ensure that the associated NRTS is an NTS and apply them to the operational specification of the early pi-calculus. Our study stems from the recent Nominal SOS of Cimini et al. and from earlier works in nominal sets and nominal logic by Gabbay, Pitts and their collaborators

    Rule Formats for Nominal Process Calculi

    Get PDF
    The nominal transition systems (NTSs) of Parrow et al. describe the operational semantics of nominal process calculi. We study NTSs in terms of the nominal residual transition systems (NRTSs) that we introduce. We provide rule formats for the specifications of NRTSs that ensure that the associated NRTS is an NTS and apply them to the operational specifications of the early and late pi-calculus. We also explore alternative specifications of the NTSs in which we allow residuals of abstraction sort, and introduce translations between the systems with and without residuals of abstraction sort. Our study stems from the Nominal SOS of Cimini et al. and from earlier works in nominal sets and nominal logic by Gabbay, Pitts and their collaborators

    Rule Formats for Nominal Process Calculi

    Get PDF
    The nominal transition systems (NTSs) of Parrow et al. describe the operational semantics of nominal process calculi. We study NTSs in terms of the nominal residual transition systems (NRTSs) that we introduce. We provide rule formats for the specifications of NRTSs that ensure that the associated NRTS is an NTS and apply them to the operational specifications of the early and late pi-calculus. We also explore alternative specifications of the NTSs in which we allow residuals of abstraction sort, and introduce translations between the systems with and without residuals of abstraction sort. Our study stems from the Nominal SOS of Cimini et al. and from earlier works in nominal sets and nominal logic by Gabbay, Pitts and their collaborators

    Actor Network Procedures as Psi-calculi for Security Ceremonies

    Full text link
    The actor network procedures of Pavlovic and Meadows are a recent graphical formalism developed for describing security ceremonies and for reasoning about their security properties. The present work studies the relations of the actor network procedures (ANP) to the recent psi-calculi framework. Psi-calculi is a parametric formalism where calculi like spi- or applied-pi are found as instances. Psi-calculi are operational and largely non-graphical, but have strong foundation based on the theory of nominal sets and process algebras. One purpose of the present work is to give a semantics to ANP through psi-calculi. Another aim was to give a graphical language for a psi-calculus instance for security ceremonies. At the same time, this work provides more insight into the details of the ANPs formalization and the graphical representation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    De Morgan Dual Nominal Quantifiers Modelling Private Names in Non-Commutative Logic

    Get PDF
    This paper explores the proof theory necessary for recommending an expressive but decidable first-order system, named MAV1, featuring a de Morgan dual pair of nominal quantifiers. These nominal quantifiers called `new' and `wen' are distinct from the self-dual Gabbay-Pitts and Miller-Tiu nominal quantifiers. The novelty of these nominal quantifiers is they are polarised in the sense that `new' distributes over positive operators while `wen' distributes over negative operators. This greater control of bookkeeping enables private names to be modelled in processes embedded as formulae in MAV1. The technical challenge is to establish a cut elimination result, from which essential properties including the transitivity of implication follow. Since the system is defined using the calculus of structures, a generalisation of the sequent calculus, novel techniques are employed. The proof relies on an intricately designed multiset-based measure of the size of a proof, which is used to guide a normalisation technique called splitting. The presence of equivariance, which swaps successive quantifiers, induces complex inter-dependencies between nominal quantifiers, additive conjunction and multiplicative operators in the proof of splitting. Every rule is justified by an example demonstrating why the rule is necessary for soundly embedding processes and ensuring that cut elimination holds.Comment: Submitted for review 18/2/2016; accepted CONCUR 2016; extended version submitted to journal 27/11/201
    corecore