8,606 research outputs found

    On the degree conjecture for separability of multipartite quantum states

    Full text link
    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein {\it et al.} [Phys. Rev. A \textbf{73}, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for {\it pure} multipartite quantum states, using the modified tensor product of graphs defined in [J. Phys. A: Math. Theor. \textbf{40}, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm we mean that the execution time of this algorithm increases as a polynomial in m,m, where mm is the number of parts of the quantum system. We give a counter-example to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.Comment: 17 pages, 3 figures. Comments are welcom

    Hadwiger Number and the Cartesian Product Of Graphs

    Full text link
    The Hadwiger number mr(G) of a graph G is the largest integer n for which the complete graph K_n on n vertices is a minor of G. Hadwiger conjectured that for every graph G, mr(G) >= chi(G), where chi(G) is the chromatic number of G. In this paper, we study the Hadwiger number of the Cartesian product G [] H of graphs. As the main result of this paper, we prove that mr(G_1 [] G_2) >= h\sqrt{l}(1 - o(1)) for any two graphs G_1 and G_2 with mr(G_1) = h and mr(G_2) = l. We show that the above lower bound is asymptotically best possible. This asymptotically settles a question of Z. Miller (1978). As consequences of our main result, we show the following: 1. Let G be a connected graph. Let the (unique) prime factorization of G be given by G_1 [] G_2 [] ... [] G_k. Then G satisfies Hadwiger's conjecture if k >= 2.log(log(chi(G))) + c', where c' is a constant. This improves the 2.log(chi(G))+3 bound of Chandran and Sivadasan. 2. Let G_1 and G_2 be two graphs such that chi(G_1) >= chi(G_2) >= c.log^{1.5}(chi(G_1)), where c is a constant. Then G_1 [] G_2 satisfies Hadwiger's conjecture. 3. Hadwiger's conjecture is true for G^d (Cartesian product of G taken d times) for every graph G and every d >= 2. This settles a question by Chandran and Sivadasan (They had shown that the Hadiwger's conjecture is true for G^d if d >= 3.)Comment: 10 pages, 2 figures, major update: lower and upper bound proofs have been revised. The bounds are now asymptotically tigh

    On the strong partition dimension of graphs

    Full text link
    We present a different way to obtain generators of metric spaces having the property that the ``position'' of every element of the space is uniquely determined by the distances from the elements of the generators. Specifically we introduce a generator based on a partition of the metric space into sets of elements. The sets of the partition will work as the new elements which will uniquely determine the position of each single element of the space. A set WW of vertices of a connected graph GG strongly resolves two different vertices x,yWx,y\notin W if either dG(x,W)=dG(x,y)+dG(y,W)d_G(x,W)=d_G(x,y)+d_G(y,W) or dG(y,W)=dG(y,x)+dG(x,W)d_G(y,W)=d_G(y,x)+d_G(x,W), where dG(x,W)=min{d(x,w)  :  wW}d_G(x,W)=\min\left\{d(x,w)\;:\;w\in W\right\}. An ordered vertex partition Π={U1,U2,...,Uk}\Pi=\left\{U_1,U_2,...,U_k\right\} of a graph GG is a strong resolving partition for GG if every two different vertices of GG belonging to the same set of the partition are strongly resolved by some set of Π\Pi. A strong resolving partition of minimum cardinality is called a strong partition basis and its cardinality the strong partition dimension. In this article we introduce the concepts of strong resolving partition and strong partition dimension and we begin with the study of its mathematical properties. We give some realizability results for this parameter and we also obtain tight bounds and closed formulae for the strong metric dimension of several graphs.Comment: 16 page

    Controllability and observability of grid graphs via reduction and symmetries

    Full text link
    In this paper we investigate the controllability and observability properties of a family of linear dynamical systems, whose structure is induced by the Laplacian of a grid graph. This analysis is motivated by several applications in network control and estimation, quantum computation and discretization of partial differential equations. Specifically, we characterize the structure of the grid eigenvectors by means of suitable decompositions of the graph. For each eigenvalue, based on its multiplicity and on suitable symmetries of the corresponding eigenvectors, we provide necessary and sufficient conditions to characterize all and only the nodes from which the induced dynamical system is controllable (observable). We discuss the proposed criteria and show, through suitable examples, how such criteria reduce the complexity of the controllability (respectively observability) analysis of the grid

    Perfect state transfer, graph products and equitable partitions

    Full text link
    We describe new constructions of graphs which exhibit perfect state transfer on continuous-time quantum walks. Our constructions are based on variants of the double cones [BCMS09,ANOPRT10,ANOPRT09] and the Cartesian graph products (which includes the n-cube) [CDDEKL05]. Some of our results include: (1) If GG is a graph with perfect state transfer at time tGt_{G}, where t_{G}\Spec(G) \subseteq \ZZ\pi, and HH is a circulant with odd eigenvalues, their weak product G×HG \times H has perfect state transfer. Also, if HH is a regular graph with perfect state transfer at time tHt_{H} and GG is a graph where t_{H}|V_{H}|\Spec(G) \subseteq 2\ZZ\pi, their lexicographic product G[H]G[H] has perfect state transfer. (2) The double cone K2+G\overline{K}_{2} + G on any connected graph GG, has perfect state transfer if the weights of the cone edges are proportional to the Perron eigenvector of GG. This generalizes results for double cone on regular graphs studied in [BCMS09,ANOPRT10,ANOPRT09]. (3) For an infinite family \GG of regular graphs, there is a circulant connection so the graph K_{1}+\GG\circ\GG+K_{1} has perfect state transfer. In contrast, no perfect state transfer exists if a complete bipartite connection is used (even in the presence of weights) [ANOPRT09]. We also describe a generalization of the path collapsing argument [CCDFGS03,CDDEKL05], which reduces questions about perfect state transfer to simpler (weighted) multigraphs, for graphs with equitable distance partitions.Comment: 18 pages, 6 figure
    corecore