20,485 research outputs found

    A Novel Self-Intersection Penalty Term for Statistical Body Shape Models and Its Applications in 3D Pose Estimation

    Full text link
    Statistical body shape models are widely used in 3D pose estimation due to their low-dimensional parameters representation. However, it is difficult to avoid self-intersection between body parts accurately. Motivated by this fact, we proposed a novel self-intersection penalty term for statistical body shape models applied in 3D pose estimation. To avoid the trouble of computing self-intersection for complex surfaces like the body meshes, the gradient of our proposed self-intersection penalty term is manually derived from the perspective of geometry. First, the self-intersection penalty term is defined as the volume of the self-intersection region. To calculate the partial derivatives with respect to the coordinates of the vertices, we employed detection rays to divide vertices of statistical body shape models into different groups depending on whether the vertex is in the region of self-intersection. Second, the partial derivatives could be easily derived by the normal vectors of neighboring triangles of the vertices. Finally, this penalty term could be applied in gradient-based optimization algorithms to remove the self-intersection of triangular meshes without using any approximation. Qualitative and quantitative evaluations were conducted to demonstrate the effectiveness and generality of our proposed method compared with previous approaches. The experimental results show that our proposed penalty term can avoid self-intersection to exclude unreasonable predictions and improves the accuracy of 3D pose estimation indirectly. Further more, the proposed method could be employed universally in triangular mesh based 3D reconstruction

    The placement of the head that maximizes predictability. An information theoretic approach

    Get PDF
    The minimization of the length of syntactic dependencies is a well-established principle of word order and the basis of a mathematical theory of word order. Here we complete that theory from the perspective of information theory, adding a competing word order principle: the maximization of predictability of a target element. These two principles are in conflict: to maximize the predictability of the head, the head should appear last, which maximizes the costs with respect to dependency length minimization. The implications of such a broad theoretical framework to understand the optimality, diversity and evolution of the six possible orderings of subject, object and verb are reviewed.Comment: in press in Glottometric

    High performance computing simulator for the performance assessment of trajectory based operations

    Get PDF
    High performance computing (HPC), both at hardware and software level, has demonstrated significant improve- ments in processing large datasets in a timely manner. However, HPC in the field of air traffic management (ATM) can be much more than only a time reducing tool. It could also be used to build an ATM simulator in which distributed scenarios where decentralized elements (airspace users) interact through a centralized manager in order to generate a trajectory-optimized conflict-free scenario. In this work, we introduce an early prototype of an ATM simulator, focusing on air traffic flow management at strategic, pre-tactical and tactical levels, which allows the calculation of safety and efficiency indicators for optimized trajectories, both at individual and network level. The software architecture of the simulator, relying on a HPC cluster of computers, has been preliminary tested with a set of flights whose trajectory vertical profiles have been optimized according to two different concepts of operations: conventional cruise operations (i.e. flying at constant altitudes and according to the flight levels scheme rules) and continuous climb cruise operations (i.e., optimizing the trajectories with no vertical constraints). The novel ATM simulator has been tested to show preliminary benchmarking results between these two concepts of operations. The simulator here presented can contribute as a testbed to evaluate the potential benefits of future Trajectory Based Operations and to understand the complex relationships among the different ATM key performance areasPeer ReviewedPostprint (published version
    • …
    corecore