7,124 research outputs found

    The Research on the L(2,1)-labeling problem from Graph theoretic and Graph Algorithmic Approaches

    Get PDF
    The L(2,1) -labeling problem has been extensively researched on many graph classes. In this thesis, we have also studied the problem on some particular classes of graphs. In Chapter 2 we present a new general approach to derive upper bounds for L(2,1)-labeling numbers and applied that approach to derive bounds for the four standard graph products. In Chapter 3 we study the L(2,1)-labeling number of the composition of n graphs. In Chapter 4 we consider the Cartesian sum of graphs and derive, both, lower and upper bounds for their L(2,1)-labeling number. We use two different approaches to derive the upper bounds and both approaches improve previously known bounds. We also present new approximation algorithms for the L(2,1 )-labeling problem on Cartesian sum graphs. In Chapter 5, we characterize d-disk graphs for d\u3e1, and give the first upper bounds on the L(2,1)-labeling number for this class of graphs. In Chapter 6, we compute upper bounds for the L(2,1)-labeling number of total graphs of K_{1,n}-free graphs. In Chapter 7, we study the four standard products of graphs using the adjacency matrix analysis approach. In Chapter 8, we determine the exact value for the L(2,1)-labeling number of a particular class of Mycielski graphs. We also provide, both, lower and upper bounds for the L(2,1)-labeling number of any Mycielski graph

    A survey of graph burning

    Get PDF
    Graph burning is a deterministic, discrete-time process that models how influence or contagion spreads in a graph. Associated to each graph is its burning number, which is a parameter that quantifies how quickly the influence spreads. We survey results on graph burning, focusing on bounds, conjectures, and algorithms related to the burning number. We will discuss state-of-the-art results on the burning number conjecture, burning numbers of graph classes, and algorithmic complexity. We include a list of conjectures, variants, and open problems on graph burning

    A survey of graph burning

    Get PDF
    Graph burning is a deterministic, discrete-time process that models how influence or contagion spreads in a graph. Associated to each graph is its burning number, which is a parameter that quantifies how quickly the influence spreads. We survey results on graph burning, focusing on bounds, conjectures, and algorithms related to the burning number. We will discuss state-of-the-art results on the burning number conjecture, burning numbers of graph classes, and algorithmic complexity. We include a list of conjectures, variants, and open problems on graph burning

    The hierarchical product of graphs

    Get PDF
    A new operation on graphs is introduced and some of its properties are studied. We call it hierarchical product, because of the strong (connectedness) hierarchy of the vertices in the resulting graphs. In fact, the obtained graphs turn out to be subgraphs of the cartesian product of the corresponding factors. Some well-known properties of the cartesian product, such as a reduced mean distance and diameter, simple routing algorithms and some optimal communication protocols are inherited by the hierarchical product. We also address the study of some algebraic properties of the hierarchical product of two or more graphs. In particular, the spectrum of the binary hypertree TmT_m (which is the hierarchical product of several copies of the complete graph on two vertices) is fully characterized; turning out to be an interesting example of graph with all its eigenvalues distinct. Finally, some natural generalizations of the hierarchic product are proposed

    Isometric Embeddings in Trees and Their Use in Distance Problems

    Get PDF
    International audienceWe present powerful techniques for computing the diameter, all the eccentricities, and other related distance problems on some geometric graph classes, by exploiting their "tree-likeness" properties. We illustrate the usefulness of our approach as follows: (1) We propose a subquadratic-time algorithm for computing all eccentricities on partial cubes of bounded lattice dimension and isometric dimension O(n^{0.5−ε}). This is one of the first positive results achieved for the diameter problem on a subclass of partial cubes beyond median graphs. (2) Then, we obtain almost linear-time algorithms for computing all eccentricities in some classes of face-regular plane graphs, including benzenoid systems, with applications to chemistry. Previously, only a linear-time algorithm for computing the diameter and the center was known (and an O(n^{5/3})-time algorithm for computing all the eccentricities). (3) We also present an almost linear-time algorithm for computing the eccentricities in a polygon graph with an additive one-sided error of at most 2. (4) Finally, on any cube-free median graph, we can compute its absolute center in almost linear time. Independently from this work, Bergé and Habib have recently presented a linear-time algorithm for computing all eccentricities in this graph class (LAGOS'21), which also implies a linear-time algorithm for the absolute center problem. Our strategy here consists in exploiting the existence of some embeddings of these graphs in either a system or a product of trees, or in a single tree but where each vertex of the graph is embedded in a subset of nodes. While this may look like a natural idea, the way it can be done efficiently, which is our main technical contribution in the paper, is surprisingly intricate
    corecore