8 research outputs found

    Cross-Fertilizing Strategies for Better EM Mountain Climbing and DA Field Exploration: A Graphical Guide Book

    Full text link
    In recent years, a variety of extensions and refinements have been developed for data augmentation based model fitting routines. These developments aim to extend the application, improve the speed and/or simplify the implementation of data augmentation methods, such as the deterministic EM algorithm for mode finding and stochastic Gibbs sampler and other auxiliary-variable based methods for posterior sampling. In this overview article we graphically illustrate and compare a number of these extensions, all of which aim to maintain the simplicity and computation stability of their predecessors. We particularly emphasize the usefulness of identifying similarities between the deterministic and stochastic counterparts as we seek more efficient computational strategies. We also demonstrate the applicability of data augmentation methods for handling complex models with highly hierarchical structure, using a high-energy high-resolution spectral imaging model for data from satellite telescopes, such as the Chandra X-ray Observatory.Comment: Published in at http://dx.doi.org/10.1214/09-STS309 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The EM Algorithm

    Get PDF
    The Expectation-Maximization (EM) algorithm is a broadly applicable approach to the iterative computation of maximum likelihood (ML) estimates, useful in a variety of incomplete-data problems. Maximum likelihood estimation and likelihood-based inference are of central importance in statistical theory and data analysis. Maximum likelihood estimation is a general-purpose method with attractive properties. It is the most-often used estimation technique in the frequentist framework; it is also relevant in the Bayesian framework (Chapter III.11). Often Bayesian solutions are justified with the help of likelihoods and maximum likelihood estimates (MLE), and Bayesian solutions are similar to penalized likelihood estimates. Maximum likelihood estimation is an ubiquitous technique and is used extensively in every area where statistical techniques are used. --

    Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity

    Get PDF
    Rotational post hoc transformations have traditionally played a key role in enhancing the interpretability of factor analysis. Regularization methods also serve to achieve this goal by prioritizing sparse loading matrices. In this work, we bridge these two paradigms with a unifying Bayesian framework. Our approach deploys intermediate factor rotations throughout the learning process, greatly enhancing the effectiveness of sparsity inducing priors. These automatic rotations to sparsity are embedded within a PXL-EM algorithm, a Bayesian variant of parameter-expanded EM for posterior mode detection. By iterating between soft-thresholding of small factor loadings and transformations of the factor basis, we obtain (a) dramatic accelerations, (b) robustness against poor initializations, and (c) better oriented sparse solutions. To avoid the prespecification of the factor cardinality, we extend the loading matrix to have infinitely many columns with the Indian buffet process (IBP) prior. The factor dimensionality is learned from the posterior, which is shown to concentrate on sparse matrices. Our deployment of PXL-EM performs a dynamic posterior exploration, outputting a solution path indexed by a sequence of spike-and-slab priors. For accurate recovery of the factor loadings, we deploy the spike-and-slab LASSO prior, a two-component refinement of the Laplace prior. A companion criterion, motivated as an integral lower bound, is provided to effectively select the best recovery. The potential of the proposed procedure is demonstrated on both simulated and real high-dimensional data, which would render posterior simulation impractical. Supplementary materials for this article are available online

    Interweaving Markov Chain Monte Carlo Strategies for Efficient Estimation of Dynamic Linear Models

    Get PDF
    In dynamic linear models (DLMs) with unknown fixed parameters, a standard Markov chain Monte Carlo (MCMC) sampling strategy is to alternate sampling of latent states conditional on fixed parameters and sampling of fixed parameters conditional on latent states. In some regions of the parameter space, this standard data augmentation (DA) algorithm can be inefficient. To improve efficiency, we apply the interweaving strategies of Yu and Meng to DLMs. For this, we introduce three novel alternative DAs for DLMs: the scaled errors, wrongly scaled errors, and wrongly scaled disturbances. With the latent states and the less well known scaled disturbances, this yields five unique DAs to employ in MCMC algorithms. Each DA implies a unique MCMC sampling strategy and they can be combined into interweaving and alternating strategies that improve MCMC efficiency. We assess these strategies using the local level model and demonstrate that several strategies improve efficiency relative to the standard approach and the most efficient strategy interweaves the scaled errors and scaled disturbances. Supplementary materials are available online for this article

    Bayesian modeling and computation with latent variables

    Get PDF
    This dissertation contributes to Bayesian statistics and economics using latent variable methods. The first chapter explores interweaving methods for constructing Markov chains in dynamic linear models (DLMs). Here, several new data augmentations are defined for the DLM, and a negative result concerning the sort of augmentations that can be found for the model is proved. A simulation study using a specific DLM illuminates when each of several DA and interweaving algorithms performs well. The second chapter is an extention of the first, introducing a method to extend the results of the first chapter to DLMs where the observation level matrix is not square. Finally, the last chapter develops methods for Bayesian causal inference to compare two treatments using partial identification methods. Specifically, it develops priors that capture the intuition of standard partial identification methods in the Bayesian setting and extends those prior to a hierarchical setting. Then it illustrates how to use the model with these priors in an example evaluating the effectiveness of the National School Lunch Program
    corecore