49,943 research outputs found

    B-spline techniques for volatility modeling

    Full text link
    This paper is devoted to the application of B-splines to volatility modeling, specifically the calibration of the leverage function in stochastic local volatility models and the parameterization of an arbitrage-free implied volatility surface calibrated to sparse option data. We use an extension of classical B-splines obtained by including basis functions with infinite support. We first come back to the application of shape-constrained B-splines to the estimation of conditional expectations, not merely from a scatter plot but also from the given marginal distributions. An application is the Monte Carlo calibration of stochastic local volatility models by Markov projection. Then we present a new technique for the calibration of an implied volatility surface to sparse option data. We use a B-spline parameterization of the Radon-Nikodym derivative of the underlying's risk-neutral probability density with respect to a roughly calibrated base model. We show that this method provides smooth arbitrage-free implied volatility surfaces. Finally, we sketch a Galerkin method with B-spline finite elements to the solution of the partial differential equation satisfied by the Radon-Nikodym derivative.Comment: 25 page

    Statistical applications of the multivariate skew-normal distribution

    Full text link
    Azzalini & Dalla Valle (1996) have recently discussed the multivariate skew-normal distribution which extends the class of normal distributions by the addition of a shape parameter. The first part of the present paper examines further probabilistic properties of the distribution, with special emphasis on aspects of statistical relevance. Inferential and other statistical issues are discussed in the following part, with applications to some multivariate statistics problems, illustrated by numerical examples. Finally, a further extension is described which introduces a skewing factor of an elliptical density.Comment: full-length version of the published paper, 32 pages, with 7 figures, uses psfra

    Distributions generated by perturbation of symmetry with emphasis on a multivariate skew tt distribution

    Full text link
    A fairly general procedure is studied to perturbate a multivariate density satisfying a weak form of multivariate symmetry, and to generate a whole set of non-symmetric densities. The approach is general enough to encompass a number of recent proposals in the literature, variously related to the skew normal distribution. The special case of skew elliptical densities is examined in detail, establishing connections with existing similar work. The final part of the paper specializes further to a form of multivariate skew tt density. Likelihood inference for this distribution is examined, and it is illustrated with numerical examples.Comment: full-length version of the published paper, 31 pages with 9 figure

    Computationally efficient recursions for top-order invariant polynomials with applications

    Get PDF
    The top-order zonal polynomials Ck(A),and top-order invariant polynomials Ck1,...,kr(A1,...,Ar)in which each of the partitions of ki,i = 1,..., r,has only one part, occur frequently in multivariate distribution theory, and econometrics - see, for example Phillips (1980, 1984, 1985, 1986), Hillier (1985, 2001), Hillier and Satchell (1986), and Smith (1989, 1993). However, even with the recursive algorithms of Ruben (1962) and Chikuse (1987), numerical evaluation of these invariant polynomials is extremely time consuming. As a result, the value of invariant polynomials has been largely confined to analytic work on distribution theory. In this paper we present new, very much more efficient, algorithms for computing both the top-order zonal and invariant polynomials. These results should make the theoretical results involving these functions much more valuable for direct practical study. We demonstrate the value of our results by providing fast and accurate algorithms for computing the moments of a ratio of quadratic forms in normal random variables.

    On the distribution of estimators of diffusion constants for Brownian motion

    Full text link
    We discuss the distribution of various estimators for extracting the diffusion constant of single Brownian trajectories obtained by fitting the squared displacement of the trajectory. The analysis of the problem can be framed in terms of quadratic functionals of Brownian motion that correspond to the Euclidean path integral for simple Harmonic oscillators with time dependent frequencies. Explicit analytical results are given for the distribution of the diffusion constant estimator in a number of cases and our results are confirmed by numerical simulations.Comment: 14 pages, 5 figure

    Some Historical Aspects of Error Calculus by Dirichlet Forms

    Get PDF
    We discuss the main stages of development of the error calculation since the beginning of XIX-th century by insisting on what prefigures the use of Dirichlet forms and emphasizing the mathematical properties that make the use of Dirichlet forms more relevant and efficient. The purpose of the paper is mainly to clarify the concepts. We also indicate some possible future research.Comment: 18 page

    Bayesian analysis of DSGE models

    Get PDF
    This paper reviews Bayesian methods that have been developed in recent years to estimate and evaluate dynamic stochastic general equilibrium (DSGE) models. We consider the estimation of linearized DSGE models, the evaluation of models based on Bayesian model checking, posterior odds comparisons, and comparisons to vector autoregressions, as well as the nonlinear estimation based on a second-order accurate model solution. These methods are applied to data generated from correctly specified and misspecified linearized DSGE models, and a DSGE model that was solved with a second-order perturbation method.Macroeconomics ; Vector autoregression
    corecore