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Abstract

The top-order zonal polynomials Ck(A), and top-order invariant polynomials Ck1,...,kr(A1, . . . , Ar)

in which each of the partitions of ki, i = 1, . . . , r, has only one part, occur frequently in multivariate

distribution theory, and econometrics — see, for example Phillips (1980, 1984, 1985, 1986), Hillier

(1985, 2001), Hillier and Satchell (1986), and Smith (1989, 1993). However, even with the recursive

algorithms of Ruben (1962) and Chikuse (1987), numerical evaluation of these invariant polynomials

is extremely time consuming. As a result, the value of invariant polynomials has been largely

confined to analytic work on distribution theory. In this paper we present new, very much more

efficient, algorithms for computing both the top-order zonal and invariant polynomials. These

results should make the theoretical results involving these functions much more valuable for direct

practical study. We demonstrate the value of our results by providing fast and accurate algorithms

for computing the moments of a ratio of quadratic forms in normal random variables.



1. Introduction

Many distribution-theoretic problems in statistics and econometrics involve quite strong group-

invariance properties. This fact means that analytical results are naturally expressed in terms of

functions invariant under the relevant group action. Prominent among such functions are the zonal

polynomials of the real symmetric matrices, first introduced and studied by James (1954, 1961)

(for a more recent treatment see Muirhead (1982)). These arise, in particular, in the study of

the properties of statistics that are functions of standard normal vectors, because the joint density

function of n such variates is invariant under the action of the orthogonal group (see James (1954)).

As an example of this, if A is a real n × n symmetric matrix, and z ∼ N(0n, In), the moment

generating function of q = z′Az is easily seen to be

Mq(t) = |In − 2tA|−
1
2 . (1)

This is clearly a function only of the characteristic roots λ1, . . . , λn, say, of A, and is invariant under

permutations of those roots. That is, Mq(t) is a symmetric function of the λi, and thus will have

an expansion in terms of any of the symmetric functions in n variables (for general background

on such functions see Macdonald (1979)). The zonal polynomials belong to the ring of all such

symmetric functions, and provide a parsimonious means of expressing results such as this: Mq(t)

has a simple series expansion in terms of zonal polynomials (see (4) below). The density function

of q also has an expansion of the same type (see James (1964), Eq.(133)). The first use of the zonal

polynomials in econometrics seems to have been by Sargan (1976).

Motivated by a variety of similar, higher-dimensional, multivariate distribution problems, Davis

(1979, 1981) and Chikuse (1980) developed a family of invariant polynomials with several matrix

arguments, extending the zonal polynomials. These invariant polynomials with multiple matrix

arguments play an important role in finite sample distribution theory in both multivariate statistical

theory and econometrics. As an example of this type, the joint moment generating function of r

statistics qi = z′Aiz, with the Ai, i = 1, . . . , r, each n× n symmetric, and z ∼ N(0n, In) again, is

Mq1,...,qr(t1, ..., tr) = |In − 2A(t)|−
1
2 , (2)

where A(t) = t1A1 + ... + trAr. This is clearly invariant under the simultaneous transformations

Ai → H ′AiH, with H an n×n orthogonal matrix, and thus will have an expansion in terms of any
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family of functions invariant under this action. Again, the Davis-Chikuse invariant polynomials

provide a parsimonious expansion of this type (see below for more details).

Now, in both of the examples above, and a number of other cases of interest, only special cases of

the relevant invariant polynomials occur in the expressions that are of interest (moment generating

functions, moments, or densities), the so-called top-order polynomials, and it is to these special

cases that this paper is addressed. These special cases of the polynomials also arise in statistical

problems involving the expectation of a ratio of quadratic forms in normal variables (Smith (1989),

Hillier (2001), Forchini (2002)), the distribution of the Wald test statistic in multivariate regressions

(Phillips (1986)), and the finite sample distribution of estimators in seemingly unrelated regressions

(Hillier and Satchell (1986)), among others. In econometrics, Phillips (1980) appears to be the

first paper to use invariant polynomials with multiple matrix arguments, and his subsequent work

(Phillips (1984, 1985)) also use these polynomials in analyzing the exact properties of instrumental

variable estimators, exogenous variable coefficient estimators, and LIML estimators. See also Hillier

(1985), and Hillier, Kinal, and Srivastava (1984) for other examples.

Although many of their properties are well understood, no general formulae are known for either

the zonal polynomials, or the Davis-Chikuse invariant polynomials. This has limited their usefulness

to analytical work. However, for the top-order polynomials of both types, explicit formulae are

available. In the case of the top-order zonal polynomials, Ruben (1962) gives both an explicit

formula, and a recursive relation, that permits their direct computation (see (18) below). However,

this is fairly inefficient: the computation time of Ruben’s recursive algorithm for a k-th degree

top-order zonal polynomial is O(k2), which can be very time consuming when k is large. One of

our main results in this paper is a new recursive algorithm for the top-order zonal polynomials that

has a computation time of order only O(k), a substantial improvement on that hitherto available.

For the case of the top-order invariant polynomials with several arguments, Chikuse (1987)

presents both explicit and recursive expressions for the polynomials. Unlike the recursive relation

for top-order zonal polynomials, the expressions in Chikuse (1987) are difficult to implement, and

also very time consuming. For the two matrix arguments case, Smith (1993) simplifies the explicit

expression of top-order invariant polynomials when the order in one of the terms is just 1 or 2.

For the general case, we are unaware of any practical method for the numerical evaluation of the

top-order invariant polynomials.
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A second main contribution of this paper is to present two effective ways of dealing with this

problem. The first method is based on a generalization of the algorithm provided for top-order

zonal polynomials. This allows us to express a top-order invariant polynomial as a linear function

of at most (n + r)!/(n!r!) − 1 other top-order invariant polynomials (of lower degree), where n

is the dimension of the matrices, and r matrices are involved. When either n or r is small, this

recursive method is extremely efficient. For the case when both n and r are large, we introduce

a second method to evaluate the top-order invariant polynomial. This method relies on a new

identity between top-order invariant polynomials and top-order zonal polynomials which is based

on the results in Kan (2006), and has its roots in a lemma by Magnus (1978). Using this identity

and our fast method of computing top-order zonal polynomials, we can evaluate top-order invariant

polynomials with many matrix arguments with ease even when n is reasonably large.

To illustrate the value of our fast algorithms for evaluating top-order invariant polynomials, we

consider the problem of computing the moments of a ratio of quadratic forms of normal random

variables. Since many estimators and test statistics have this structure, the problem of finding

their moments has attracted the attention of many researchers. Most of this literature makes use

of an expression for the moments as one-dimensional integrals which can be evaluated by numerical

integration (see, e.g., Magnus (1986) and the references therein for details). The problem with this

approach is that, for high order moments particularly, the required numerical integration is very

time consuming and often numerically unstable. More importantly, except for some special cases,

there is no analysis of the approximation error from this numerical integration, so we cannot be sure

how accurate the answer produced is. Using our fast algorithms for evaluating top-order invariant

polynomials of two matrix arguments, we develop a new method for evaluating the moments of

ratio of quadratic forms in normal random variables. Besides being efficient, our method also allows

us to control the approximation error, so we can evaluate the moments up to any desired level of

accuracy.

The rest of the paper is organized as follows. Section 2 provides the main recursive algorithm

for computing top-order zonal polynomials. Recursions of the type we present are typically derived

from relations between generating functions, and this is also the methodology that we use in the

paper. For the zonal polynomials themselves, Ruben’s recursion expresses the top-order zonal

polynomials in terms of the power-sum symmetric functions, whereas our new recursion uses the
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elementary symmetric functions. The generating functions, and the relations that produce the

recursions, are defined in Section 2.1. Section 2 also presents some additional formulae for various

special cases of interest, and discusses further applications. Section 3 generalizes the recursive

algorithms that hold for top-order zonal polynomials to the case of top-order invariant polynomials.

The implementation of these algorithms requires evaluation of multiple-argument analogues of the

elementary and power-sum symmetric functions. In Section 3 we therefore also provide, apparently

for the first time, recursive procedures for evaluating these multiple-argument symmetric functions.

In addition, we present an identity between top-order invariant polynomials and top-order zonal

polynomials that allows us to efficiently compute top-order invariant polynomials with multiple

matrix arguments. Section 4 describes a new method for computing the moments of a ratio of

quadratic forms in normal random variables. Section 5 concludes the paper. The appendix contains

proofs of all propositions and lemmata. Throughout the paper we use the standard notation for

the forward factorial (or Pochhammer symbol): (a)s = a(a+ 1)....(a+ s− 1).

2. Top-Order Zonal Polynomials

2.1 Generating Functions

From von Neumann (1941) and James (1964), the function

D(t) = |In − tA|−
1
2 (3)

has an expansion in terms of top-order zonal polynomials Ck(A) given by

D(t) =
∞∑
k=0

(
1
2

)
k
Ck(A)
k!

tk, (4)

and so may be regarded as a generating function for the top-order zonal polynomials.1

To simplify the results to follow we define a normalized version of Ck(A):

dk(A) =
1
k!

(
1
2

)
k

Ck(A), (5)

so that, suppressing, from now on when there is no source of confusion, the argument matrix A

D(t) = |In − tA|−
1
2 =

∞∑
k=0

dkt
k (6)

is an ordinary generating function for the dk.
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Remark 1 Note that, comparing (1) and (4), the moments of q = z′Az, µk(A) = E[qk], can be

expressed very simply in terms of either the Ck(A) or the dk:

µk(A) = 2k
(

1
2

)
k

Ck(A) = k!2kdk. (7)

There are at least two explicit expressions available for the dk. Suppose A has eigenvalues λ1

to λn. The first explicit expression of dk was given by Ruben (1962)2

dk =
∑

k1,...,kn≥0
k1+···+kn=k

n∏
i=1

(
1
2

)
ki
λkii

ki!
. (8)

The second explicit expression of dk is also given by Ruben (1962)

dk =
∑
η

k∏
j=1

(trAj)ηj

ηj !(2j)
ηj
, (9)

where the summation is over all k-vectors η = (η1, . . . , ηk) whose elements are nonnegative in-

tegers satisfying
∑k

j=1 ηjj = k. However, these two explicit expressions are both inefficient for

computation purpose, especially when k is large.

It is clear from the generating function that dk is a function only of the characteristic roots

λ1, ..., λn of A, and is a symmetric function of those roots, invariant under permutations of them.

Various other such symmetric functions are used in the results to follow. These are, together with

their generating functions (see MacDonald (1979)):

1. The elementary symmetric functions ek, with generating function

E(t) = |In − tA| =
n∑
k=0

ekt
k, (10)

2. the power-sum symmetric functions pk, with generating function

P (t) = tr(tA(In − tA)−1) =
∞∑
k=1

pkt
k. (11)

and

3. the complete homogeneous symmetric functions hk, with generating function

H(t) = |In − tA|−1 =
∞∑
k=0

hkt
k. (12)
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Note that for notational convenience, we define ek here as the elementary symmetric functions

of the eigenvalues of −A, rather than the eigenvalues of A. By definition, d0 = e0 = h0 = 1. Also,

since (In − tA)−1 =
∑∞

k=0A
ktk for t sufficiently small, pk = tr(Ak).

2.2 Recursions: First Main Result

There are some well known connections among these symmetric functions and dk, and these rela-

tions can be obtained by differentiating E(t) and D(t). Using Bellman’s trick of writing (for any

symmetric positive definite n× n matrix Σ),

|Σ|−
1
2 =

∫
Rn

(2π)−
n
2 exp

(
−1

2
x′Σx

)
(dx), (13)

setting Σ = In − tA, differentiating and using the fact that E[x′Ax] = tr(A(In − tA)−1) when

x ∼ N(0n, (In − tA)−1), we get

tE′(t) = −E(t)P (t). (14)

Using this result, we can easily obtain

tD′(t) =
1
2
D(t)P (t). (15)

Equating coefficients of like powers of t on both sides, (14) yields the well-known Newton-Girard

identities relating the ek and pk.3

k∑
i=1

piek−i = −kek, if k ≤ n, (16)

k∑
i=k−n

piek−i = 0, if k > n. (17)

Similarly, comparing the coefficients of like powers of t on both sides of (15), we obtain the

following identity relating the dk and pk:

dk =
1
2k

k∑
i=1

pidk−i. (18)

Together with the boundary condition of d0 = 1, this yields a recursive algorithm for computing

dk which is due to Ruben (1962) (see also James (1964) and Smith (1993)). Currently, this is

probably the most efficient algorithm for computing the dk. Although this recursive algorithm is
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more efficient than the explicit formulae (8) and (9), it still requires a computation time of O(k2),

so it is not ideal to use when k is large, or when the dk are required for many values of k, as is the

case when the result under study is expressed in terms of series involving the dk.

To overcome this problem, we shall now show that there is an analogous but shorter recursive

relation expressing the dk in terms of the elementary symmetric functions ek. Let

F (t) = E(t)D(t) =
∞∑
k=0

fkt
k, (19)

where

fk =
min[k,n]∑
i=0

eidk−i. (20)

Then

F ′(t) = E′(t)D(t) + E(t)D′(t) =
[
E′(t) +

1
2t
E(t)P (t)

]
D(t) =

1
2
E′(t)D(t), (21)

on using (14) and (15). Hence,

∞∑
k=1

kfkt
k−1 =

1
2

(
n∑
i=1

ieit
i−1

)( ∞∑
i=0

dit
i

)
. (22)

Equating the coefficients of tk−1 on both sides gives

kfk =
1
2

min[k,n]∑
i=1

ieidk−i. (23)

Then, using (20) and rearranging terms, we obtain the following new recursive relation for the dk:

dk =
min[k,n]∑
i=1

(
i

2k
− 1
)
eidk−i. (24)

The key advantage of (24) over Ruben’s recursion (18) is that at most n terms are needed to

continue the recursion, because ek = 0 for k > n, a property that does not hold for the power-sums

pk. In Theorem 1 below we will see that even this result can be improved upon when some roots

are repeated.

2.3 Repeated Roots

Equation (24) holds whatever the λi’s. However, for certain problems the λi’s are not distinct,

but occur with multiplicity greater than one. For example, we are often interested in a linear
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combination of s independent χ2
ni random variables wi, say,

w = λ1w1 + ...+ λsws. (25)

(see Robbins (1948), Pachares (1955), and Ruben (1962)). We may obviously express w as a

quadratic form in n =
∑s

i=1 ni standard normal random variables, with the matrix of the quadratic

form having roots λi, each with multiplicity ni. The following Theorem shows that in this case a

recursion analogous to (24), but of length s rather than n, can be obtained.4

THEOREM 1. Suppose A has s distinct eigenvalues λ1, · · · , λs, with multiplicities n1, · · · , ns
(n1 + n2 + · · · + ns = n), respectively. Let ẽi, i = 0, . . . , s be the coefficients of ti in the following

polynomial
s∏
i=1

(1− tλi) =
s∑
i=0

ẽit
i. (26)

Then, the dk satisfy the recursive relation:

dk =
min[k,s]∑
i=1

(ci
k
− ẽi

)
dk−i, d0 = 1, (27)

where

ci = iẽi +

∑i−1
j=0 ẽjpi−j

2
, i = 1, . . . , s. (28)

When ni = m for i = 1, . . . , s, the recursive relation can be simplified to

dk =
min[k,s]∑
i=1

[
(2−m)i

2k
− 1
]
ẽidk−i, d0 = 1. (29)

For the case that all the eigenvalues of A are distinct (i.e., s = n and m = 1), we have ẽi = ei and

dk =
min[k,n]∑
i=1

(
i

2k
− 1
)
eidk−i, d0 = 1. (30)

Theorem 1 provides a recursive relation for the dk that has length at most s, the number of distinct

eigenvalues of A, and it is independent of k, so the computation time for dk is only O(k), as

claimed.5
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2.4 Roots with Even Multiplicities

When the distinct eigenvalues of A all have even multiplicities, the problem of evaluating zonal

polynomials dk can be reduced to the problem of evaluating complete homogeneous symmetric

functions. To see this, assume that each λi occurs with even multiplicity ni = 2mi for i = 1, . . . , s,

so n = n1 + . . . + ns = 2(m1 + . . . + ms) = 2m, say. The generating function for the dk can be

written as:

D(t) = |In − tA|−
1
2 =

1∏s
i=1(1− tλi)mi

= |Im − tÃ|−1 =
∞∑
k=0

hk(Ã)tk, (31)

where Ã has s distinct eigenvalues λ1, . . . , λs, with multiplicities m1, . . . ,ms, respectively, and hk(Ã)

is the k-th order complete homogeneous symmetric function of the eigenvalues of Ã. Equating

coefficients of powers of t, it is clear that:

dk(A) = hk(Ã). (32)

Thus, computing the dk(A) is equivalent to computing the hk(Ã).

Various recursive relations for, and explicit formulae for, the homogeneous symmetric functions

are well-known - see MacDonald (1979), for instance. However, we shall now present a new, non-

recursive, relation that provides an extremely efficient method of computing the hk(Ã), and hence

the dk(A). This is based on a partial fractions expansion of the generating function for the hk(Ã),

H̃(t). This is much faster than the known recursive algorithms hitherto available. Before giving

the general result it is helpful to consider the case where s = m, i.e., the roots of Ã are distinct. In

this case, if we write

H̃(t) =
1∏m

i=1(1− tλi)
=

m∑
i=1

ai
(1− tλi)

, (33)

then, on expanding each geometric series and equating coefficients of powers of t, we obtain

hk(Ã) =
m∑
i=1

aiλ
k
i . (34)

Multiplying both sides of (33) by (1− tλi) and then setting t = λ−1
i , it is easy to see that

ai =
m∏
j=1
j 6=i

(
λi

λi − λj

)
, i = 1, . . . ,m, (35)

9



which are straightforward to compute. Thus, all of the hk(Ã) may be computed (non-recursively)

from (34).

In the general case, where some of the mi may be greater than one, the analogue of (33) will

be of the form

H̃(t) =
s∑
i=1

mi∑
j=1

ai,j
(1− tλi)j

, (36)

In this case the coefficients ai,j are more complicated. The general result is given in the following

Theorem:

THEOREM 2. When some of the roots of Ã occur with multiplicity mi > 1, then

hk(Ã) =
1
k!

s∑
i=1

 mi∑
j=1

(j)kai,j

λki . (37)

In this expression the coefficients ai,j are given by:

ai,mi−r =
s∏
j=1
j 6=i

(
λi

λi − λj

)mj
hr(Bi), r = 0, . . . ,mi − 1, (38)

where hr(Bi) denotes the r-th order complete homogeneous symmetric function of Bi, and Bi is a

matrix that has distinct eigenvalues λj/(λj − λi) with multiplicity mj for j = 1, . . . , s and j 6= i.

It follows that, when ni’s are all even, once the ai,j ’s are obtained, the dk(A) can be computed

for any k without first computing d0 to dk−1. As a result, in the special case of roots with even

multiplicities, (37) is more efficient for computing the dk than the recursive algorithm given in

Theorem 1.6

2.4.1 Hypergeometric Functions

The hypergeometric functions of matrix argument are, in general, defined in terms of the zonal

polynomials as follows (see Muirhead (1982), Chapter 7):

pFq(α1, · · · , αp;β1, · · · , βq;A) =
∞∑
k=0

∑
κ

(α1)κ · · · (αp)κ

(β1)κ · · · (βq)κ

Cκ(A)
k!

, (39)

where A is an n×n symmetric matrix,
∑

κ denotes summation over all partitions κ = (k1, . . . , kn),

k1 ≥ · · · ≥ kn ≥ 0 of k, Cκ(A) is the zonal polynomial of A corresponding to κ and (α)κ =

10



∏n
i=1

(
α− i−1

2

)
ki

. The moment generating function for z′Az in (1) is an example of such a function,

corresponding to the case p = 1, q = 0, α1 = 1
2 , with argument matrix 2A. In addition, both the

cumulative and the probability density functions of z′Az can also be written using such function

with p = q = 1, α1 = 1/2, and β1 = n/2 + 1 or n/2 (see (42) and (44) below). Other examples

occur in the literature mentioned in the Introduction.

Now, when one of the αi’s in the numerator is 1/2, the expression for pFq is significantly

simplified because only the top-order zonal polynomial is involved for each k. Without loss of

generality, we assume α1 = 1/2, and we have

pFq

(
1
2
, α2, · · · , αp;β1, · · · , βq;A

)
=
∞∑
k=0

(1
2)k(α2)k · · · (αp)k
(β1)k · · · (βq)k

Ck(A)
k!

=
∞∑
k=0

(α2)k · · · (αp)k
(β1)k · · · (βq)k

dk. (40)

Therefore, our fast recursive algorithm for computing dk also allows us to efficiently compute

hypergeometric functions in this special, but important, case — or at least finite truncations of

their series expansions.7

In general, there is no known relation between hypergeometric functions of matrix argument

and hypergeometric functions of scalar argument. However, when all the eigenvalues of A have even

multiplicities, the following lemma shows that the hypergeometric function in (40) can be written

as a linear combination of hypergeometric functions with scalar arguments.

LEMMA 1. Suppose ni’s are all even, and let mi = ni/2, i = 1, . . . , s. Then, we have

pFq

(
1
2
, α2, · · · , αp;β1, · · · , βq;A

)
=

s∑
i=1

mi∑
j=1

ai,jpFq(j, α2, · · · , αp;β1, · · · , βq;λi),

where ai,j’s are defined in (38).

As the hypergeometric functions with scalar argument are widely available in most modern mathe-

matical software, Lemma 1 provides us with a convenient way to compute hypergeometric functions

of matrix argument when one of the parameters in the numerator is 1/2 and the matrix has eigen-

values with even multiplicities.

2.5 Some Applications

We have already seen (in (7)) that, if z ∼ N(0n, In), E[(z′Az)k] = 2kk!dk. A slightly more general

result is implied by this: it is well-known that, if z ∼ N(0n, In), then v = (z′z)−
1
2 z and q = z′z

11



are independent, v is uniformly distributed on the unit n-sphere, and q ∼ χ2
n. It follows from these

facts and (7) that

E

[(
z′Az

z′z

)k]
=
∫
v′v=1

(v′Av)k(dv) =
k!(
n
2

)
k

dk, (41)

where (dv) denotes normalized Haar measure on the surface of the unit n-sphere (see Muirhead

(1982), Chapter 2). This is an example of more general results discussed, for instance, in Muirhead

(1982), Chapter 7, for integrals over the orthogonal group. The result holds for any spherically

symmetric distribution for z, not just the N(0n, In) (see Hillier (2001) for more on this statistic).

Our recursive formula for dk is useful for all such calculations of moments, and generalizations of

these results will be given in Section 4 below.

Solutions to a number of other distribution problems in statistics can be expressed as linear

functions of dk. We have already seen from Remark 1 that the computation of the moments of a

linear combination of independent χ2 random variables, w in (25), is the same as computing dk.

In addition, the cumulative density function (cdf) and probability density function (pdf) of w are

both closely related to dk. For example, when λi > 0 for i = 1, . . . , s, Robbins (1948) and Pachares

(1955) show that for c ≥ 0,

P [w < c] =
c
n
2

2
n
2 Γ
(
n
2 + 1

)
|A|

1
2

1F1

(
1
2

;
n

2
+ 1;− c

2
A−1

)
, (42)

where A = Diag(λ11′n1
, . . . , λs1′ns) and n = n1 + · · · + ns. Ruben (1962) provides a different

expression for this probability

P [w < c] =

[
s∏
i=1

(
β

λi

)ni
2

] ∞∑
k=0

dk(In − βA−1)P
[
χ2
n+2k <

c

β

]
, (43)

where β is an arbitrary positive constant.8 By differentiating (42), we can easily obtain the density

of w as

pdf(w) =
w
n
2
−1

2
n
2 Γ(n2 )|A|

1
2

1F1

(
1
2

;
n

2
;−w

2
A−1

)
, (44)

(see James (1964)).

Our earlier results thus provide efficient procedures for computing the various functions involved

in all these expressions. When the ni’s are all even, we can use Lemma 1 to write (42) and (44)

as a linear combination of n/2 confluent hypergeometric functions. For the general case, we need

to approximate the cdf and pdf of w by summing a finite number of terms. In many cases, a
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large number of terms is required to achieve a desirable accuracy, so our new recursive algorithm

for computing dk can help to substantially reduce the computation time.9 As an illustration, we

consider an example with w = w1 + 2w2 + 3w3, where w1 ∼ χ2
20, w2 ∼ χ2

40, and w3 ∼ χ2
60. Using

Ruben’s algorithm (with β = 1 and a precision of 10−10), it takes Mathematica 0.313 second to

compute P [w < 400]. However, using our new recursive algorithm, it takes only 0.109 second to

get the same answer.

3. Top-Order Invariant Polynomials

3.1 Definitions

Let A1 to Ar be n × n symmetric matrices. We denote by Ck1,...,kr(A1, · · · , Ar) the top-order

invariant polynomials in which each of the partitions of ki, i = 1, . . . , r has only one part.10 The

generating function for the top-order invariant polynomials is the following generalization of the

generating function for the dk (see Chikuse (1987, Eq.(2.1)))

D(t1, . . . , tr) = |In − t1A1 − t2A2 − · · · − trAr|−
1
2

=
∞∑
k1=0

· · ·
∞∑
kr=0

(
1
2

)
k1+···+kr Ck1,...,kr(A1, . . . , Ar)

k1! · · · kr!
tk11 . . . tkrr . (45)

As in the case of top-order zonal polynomial, it is more convenient to work with a normalized

version of the top-order invariant polynomials

dk1,...,kr(A1, . . . , Ar) =

(
1
2

)
k1+···+kr Ck1,...,kr(A1, . . . , Ar)

k1! · · · kr!
. (46)

For notational compactness, we suppress the arguments in dk1,...,kr(A1, . . . , Ar) when there is no

likelihood of confusion. In addition, we shall adopt the following notation: A(t) = t1A1 + · · ·+trAr,

κ = (k1, . . . , kr) with ki ≥ 0, |κ| will denote the sum of the parts of κ, |κ| =
∑r

i=1 ki, t
κ =

∏r
i=1 t

ki
i ,

and κ! =
∏r
i=1 ki!. With this notation, the generating function for the dκ can be written as

D(t) = |In −A(t)|−
1
2 =

∞∑
k=0

∑
|κ|=k

dκt
κ. (47)

Remark 2 From the joint moment generating function of the quadratic forms qi in equation (2)

we see that, for z ∼ N(0n, In), and k = |κ|,

µκ(A1, ..., Ar) = E[(z′A1z)k1(z′A2z)k2 · · · (z′Arz)kr ] = 2kκ!dκ, (48)
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a generalization of (7) above (see Chikuse (1987, Eq.(2.17)). That is, computing top-order invariant

polynomials is equivalent to computing the product-moments of quadratic forms in standard normal

random variables.

We shall also make use of generalizations of the generating functions E(t) and P (t) in (10) and

(11). These are,

E(t) = |In −A(t)| =
n∑
k=0

∑
|κ|=k

eκt
κ (49)

and

P (t) = tr(A(t)(In −A(t))−1) =
∞∑
k=1

tr(A(t)k) =
∞∑
k=1

∑
|κ|=k

pκt
κ. (50)

The eκ are the multivariate versions of the elementary symmetric functions for the single matrix

case, and the pκ are multivariate versions of the power-sum symmetric functions for the single

matrix case. Notice that, from the generating functions defining these polynomials, both the eκ

and the pκ are invariant under precisely the same group of transformations as are the dκ, namely,

Ai → H ′AiH for i = 1, . . . , r, with H an n× n orthogonal matrix.

Chikuse (1987) provides an explicit expression for dκ in terms of the pκ as

dκ =
∑
η

∏
|ν|≥1,
ν≤κ

p
ην
ν

ην !(2|ν|)ην
, (51)

where ν = (ν1, . . . , νr) is a vector of nonnegative integers and ν ≤ κ means that νi ≤ κi for

i = 1, . . . , r. In the above expression, the summation denotes summing over the set of nonnegative

integers ην that satisfies r linear constraints
∑

ν≤κ, |ν|≥1 ηνν = κ.

There are two hurdles with using this explicit expression to compute dκ. The first is to enu-

merate the set of integers ην that satisfy the r constraints. The second is to compute pν . Both

problems are nontrivial and computationally intensive. For the special case when the top-order in-

variant polynomial involves only two matrices (i.e., r = 2), and k1 = 1 or 2, Smith (1993) provides

the explicit expressions for d1,k2 and d2,k2 . When there are more than two matrices or when k1 > 2

and k2 > 2, the complexity of this explicit expression becomes overwhelming.
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3.2 Recursive Algorithms

Similar to the top-order zonal polynomials, there are also recursive relations for the top-order

invariant polynomials. In order to obtain these recursive relations, we need to understand the

relationships between dκ, pκ and eκ.

For any analytic function f(t),

f(t) =
∞∑
k=0

∑
|κ|=k

fκt
κ, (52)

we define

ḟ(t) =
r∑
i=1

ti
∂f(t)
∂ti

=
∞∑
k=1

∑
|κ|=k

|κ|fκt
κ. (53)

In order to see the connections between eκ, pκ and dκ, we need to compute Ė(t) and Ḋ(t). Just

as in the single matrix case, it can be readily shown that

Ė(t) = −E(t)P (t), (54)

Ḋ(t) =
1
2
D(t)P (t). (55)

Comparing the coefficients of tκ on both sides of (54), we obtain the following relations between

the eκ and pκ.

k∑
i=1

∑
|ν|=i,
ν≤κ

pνeκ−ν = −keκ if k ≤ n, (56)

k∑
i=k−n

∑
|ν|=i,
ν≤κ

pνeκ−ν = 0 if k > n, (57)

where k = |κ|. These formulae provide a multivariate generalization of the Newton-Girard formulae

for the single matrix case. Note that they permit the recursive computation of the eκ, given the

pκ, or vice versa. We discuss the computation of these polynomials in the next subsection.

Similarly, comparing the coefficients of tκ on both sides of (55) we obtain the following result

relating the dκ and pκ — a generalization of Ruben’s recursion for the top-order zonal polynomials

given in equation (18) above:
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THEOREM 3. When k = |κ|:

dκ =
1
2k

k∑
i=1

∑
|ν|=i,
ν≤κ

pνdκ−ν . (58)

Together with the boundary condition of d0 = 1, this result yields a recursive algorithm for com-

puting the dκ, given the pκ. Chikuse (1987) provides a recursive result of this type for the dκ, but

(58) represents a much improved version of her results. In comparison with the explicit expression,

the recursive expression is computationally more efficient. However, a drawback of this recursive

algorithm is that we need to compute dκ by using all the pν and dκ−ν with ν ≤ κ, which is very

time consuming when ki’s are large.

To overcome this problem, we now derive a more efficient recursive algorithm for the dκ analo-

gous to the result given in Theorem 1 for the dk. As in the single matrix case, we first define

F (t) = E(t)D(t) =
∞∑
k=0

∑
|κ|=k

fκt
κ, (59)

where

fκ =
min[|κ|,n]∑

i=0

∑
|ν|=i,
ν≤κ

eνdκ−ν . (60)

Then,

Ḟ (t) = Ė(t)D(t) + E(t)Ḋ(t) =
[
Ė(t) +

1
2
E(t)P (t)

]
D(t) =

1
2
Ė(t)D(t) (61)

on using (54) and (55). Hence

∞∑
k=1

∑
|κ|=k

|κ|fκt
κ =

1
2

 n∑
i=1

∑
|ν|=i

|ν|eνtν
 ∞∑

i=0

∑
|ν|=i

dνt
ν

 . (62)

Equating the coefficients of tκ on both sides gives us

|κ|fκ =
1
2

min[|κ|,n]∑
i=1

∑
|ν|=i,
ν≤κ

|ν|eνdκ−ν . (63)

Finally, using (60) and rearranging terms gives us an efficient recursive algorithm for computing

top-order invariant polynomials, as given in the following theorem:
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THEOREM 4. The top-order invariant polynomials dκ, with |κ| = k, can be recursively obtained

from the following relation:

dκ =
min[k,n]∑
i=1

∑
|ν|=i,
ν≤κ

(
i

2k
− 1
)
eνdκ−ν , (64)

and the boundary condition of d0 = 1.

In contrast to the earlier recursive relation in terms of the pκ, our new recursive relation only

involves the eκ, and these vanish for |κ| > n. Regardless of the value of κ, Theorem 4 suggests that

dκ can be expressed as a linear combination of at most (n+ r)!/(n!r!)− 1 other top-order invariant

polynomials of lower degree. For large ki’s, this fast recursive algorithm significantly reduces the

computation time and memory requirement when compared with the recursive algorithms in (58).

Remark 3 In view of (48), the formulae in (58) and (64) give recursive relations for the product-

moments of quadratic forms in standard normal variables. Ghazal (1996) also provides a recursive

relation for these product-moments, but his formula is less efficient than ours.

3.3 An Algorithm for Computing the pκ

In order to use the recursive algorithms (58) or (64) to compute dκ, we need to first obtain the

coefficients pκ and eκ. When n is very small, we can use a symbolic mathematics program to

compute pκ and eκ.11 However, this is extremely time consuming even when n is only moderately

large. Therefore, it is crucial that we have efficient numerical algorithms for computing the pκ and

eκ. Since eκ can be easily obtained from the pκ by using (56)–(57), we focus our attention on a

numerical algorithm for computing the pκ.

Our objective is to compute the coefficients pκ in the following expansion

tr(A(t)k) =
∑
|κ|=k

pκt
κ. (65)

3.3.1 A Näıve Approach

One approach is simply to use a multinomial-like expansion for the term tr(A(t)k), but taking

account of the fact that the matrices involved do not, in general, commute. This yields an explicit
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expression for pκ as a linear combination of the traces of various products of Ai’s, but is numerically

inefficient to use, as we shall now argue.

In expanding the left hand side of (65), there are M(κ) ≡ k!/κ! terms that contain tκ. A näıve

way of computing pκ is to simply enumerate all the M(κ) permutations of the multiset with ki

occurrences of i, i = 1, . . . , r and then sum up the trace of the corresponding products of k matrices

in each term. However, many of the M(κ) terms have the same trace. This is because if A, B, and

C are symmetric matrices, we have tr(ABC) = tr(CAB) = tr(BCA) = tr(CBA) = tr(BAC) =

tr(ACB), so the trace of a product of k symmetric matrices is invariant to rotation and reversion of

the sequence of the k matrices. The number of unique traces is the same as the number of bracelets

with length k and fixed contents of ki beads in color i, i = 1, . . . , r.12 Using the Pólya enumeration

theorem, it can be shown that the number of elements in this set is given by13

B(κ) =


1
2N(κ) + 1

2M
(⌊

κ
2

⌋)
if the number of odd ki
is less than or equal to 2,

1
2N(κ) otherwise,

(66)

where bxc is the integral part of x, and

N(κ) =
1
k

∑
d|gcd(κ)

φ(d)M
(κ
d

)
, (67)

with d|gcd(κ) as the set of integer divisors of the greatest common divisor of k1 to kr, and φ(d) is

the totient function, which is the number of positive integers (including 1) less than or equal to d

that are relative prime to d. For example, if gcd(κ) = 1 and more than two ki’s are odd, then we

have B(κ) = M(κ)/(2k), so we can reduce the number of traces to be computed by a factor of 2k.

A fast algorithm for generating bracelets with fixed contents can be obtained by combining

the algorithms of Sawada (2001, 2003). Then, for each bracelet that we generate, we just need

to know how many different multiset permutations that the bracelet corresponds to and we can

then multiply the corresponding trace by this number. As it turns out, this number depends on

the primitive (i.e., smallest) period of the bracelet and whether the reverse of the bracelet is the

same as the original bracelet (after possible rotation). If the bracelet has a primitive period of h,

then it corresponds to either h or 2h multiset permutations, depending on whether the reverse of

the bracelet is the same as the original bracelet or not. This information is readily available in the

algorithms of Sawada (2001, 2003). A Matlab program for implementing this algorithm to compute

pκ is available from the authors upon request.
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The problem with this approach is that even with small r and moderately small ki’s, there

are just too many unique traces to compute. For example, when κ = (10, 10, 10), we need to

enumerate 9.2517×1010 different traces in order to obtain pκ, so this approach is clearly unsuitable

for computation purpose.

3.3.2 An Efficient Recursive Algorithm

In order to derive an efficient method of computing the pκ, first note that we are only interested

in the diagonal elements of A(t)k, so we can write

tr(A(t)k) =
n∑
i=1

e′iA(t)kei, (68)

where ei is an n-vector with i-th element equal to one and zeros elsewhere. Each term e′iA(t)kei

here admits an expansion of the form

e′iA(t)kei =
∑
|κ|=k

pκ,it
κ, (69)

so that the term we require is simply pκ =
∑n

i=1 pκ,i.14 Hence, we can concentrate on an expansion

for a term of the form e′iA(t)kei. The expansion we seek contains

fk,r =
(
k + r − 1

k

)
(70)

distinct terms, the number of compositions of k with r nonnegative parts. Let C(k, r) denote this

set of compositions.

The recursion we present below relies on two facts. First, the observation that, if we denote by

ak,i the i-th column of A(t)k, we will have an expansion

ak,i =
∑

κ∈C(k,r)

aκ,it
κ (71)

for some set of n-vectors aκ,i, κ ∈ C(k, r). On multiplying by A(t) again we therefore will have

ak+1,i =
r∑
j=1

∑
κ∈C(k,r)

Ajaκ,i(tjtκ), (72)

and this must be of the form

ak+1,i =
∑

ν∈C(k+1,r)

aν,it
ν , (73)
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for some set of n-vectors aν,i, with ν ∈ C(k + 1, r). Thus, for ν ∈ C(k + 1, r), aν,i will be a

sum of products Ajaκ,i containing the terms corresponding to pairs (j,κ), with j ∈ {1, ..., r} and

κ ∈ C(k, r), that yield the same ν ∈ C(k+ 1, r). This suggests a recursive algorithm for computing

the columns aκ,i: if Xk is the n×fk,r matrix with columns aκ,i in some definite order, then provided

we can identify (efficiently) which sets of pairs (j,κ), with κ ∈ C(k, r), appear in which column of

Xk+1, the recursion will be well-defined.

The ability to make the required identification of columns efficiently depends on the result given

in the following Lemma. This provides, for any k and r, a mapping from the set C(k, r) onto the

integers {1, 2, ..., fk,r} = N(k, r), say, and therefore provides a labelling of the columns of Xk for

each k. The lemma has a number of other applications, and appears to be new.

LEMMA 2. For each κ = (k1, ..., kr) ∈ C(k, r), let

si(κ) =
i∑

j=1

kj , i = 1, ..., r − 1, (74)

and define

nk(κ) = 1 +
r−1∑
i=1

(
i+ si(κ)− 1

i

)
. (75)

Then, nk(κ) ∈ N(k, r) for all κ ∈ C(k, r), and the map C(k, r)→ N(k, r) defined by nk(κ) is 1–1.

Now, adopting the numbering described above in C(k+ 1, r), it is easy to see that the sequence

κ(j) = (k1, ..., kj + 1, ..., kr) ∈ C(k+ 1, r) produced by the updating process above has the number

nk+1(κ(j)) = nk(κ) +
r−1∑
i=j

(
i+ si(κ)− 1

si(κ)

)
∈ N(k + 1, r). (76)

There can be a number of pairs (j,ν) that map into the same number nk+1(κ(j)). Let this set be

S(κ(j)), an easily-identified subset of {1, . . . , r}×C(k, r). Then, we have the recursive relation for

moving between the matrices Xk and Xk+1:

Xk+1,nk+1(κ(j)) =
∑

(j,ν)∈S(κ(j))

AjXk,nk(ν), (77)

where Xi,j stands for the j-th column of Xi. The algorithm is very efficient: with r = 3 and

n = 60, it takes less than one second in Matlab to compute the pκ’s for all κ ≤ (10, 10, 10) using

an Opteron 165 machine.
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3.4 An Alternative Formula for the dκ

Motivated by a lemma in Magnus (1978), Kan (2006) presents an identity that allows us to express

the product moments of a set of random variables as a linear combination of the moments of

various weighted sums of the random variables. The identity is, for a sequence κ = (k1, . . . , kr)

with |κ| = k,
r∏
i=1

xkii =
1
k!

∑
0≤ν≤κ

(−1)|ν|
(
κ

ν

)( r∑
i=1

hi(κ,ν)xi

)k
, (78)

where (
κ

ν

)
=

r∏
i=1

ki!
νi!(ki − νi)!

(79)

and hi(κ,ν) = ki
2 − νi. Applying this identity to the random variables xi = z′Aiz, i = 1, ..., r, and

taking expectations on both sides yields the following theorem:

THEOREM 5. Let B(κ,ν) =
∑r

i=1

(
ki
2 − νi

)
Ai, and k = |κ|. We have

dκ(A1, . . . , Ar) =
∑

0≤ν≤κ

(−1)|ν|
dk(B(κ,ν))
ν!(κ− ν)!

. (80)

As noted in Kan (2006), half of the terms on the right hand side of (80) are repeated, so one can

compute the top-order invariant polynomial by using b
∏r
i=1(ki + 1)/2c different top-order zonal

polynomials, where bxc stands for the integral part of x. The advantage of this algorithm is

that the computation of top-order zonal polynomials is extremely efficient especially with our new

recursive algorithm in Theorem 1. When n and r are both large, this algorithm can significantly

outperform the recursive algorithm in Theorem 4. However, when n is small, the algorithm in

Theorem 4 gives us a short recursive relation and it can be more efficient than (80), especially

when r is small.

3.5 Some Applications

We have seen in (48) that product moments of quadratic forms in standard normal variables can be

expressed in terms of the dκ, and we will see in the next section that these polynomials also arise in

expressions for the moments of more complicated functions of quadratic forms. Other applications

have already been mentioned in the Introduction.
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As in the case r = 1, the top-order invariant polynomials also arise in the evaluation of certain

integrals over the surface of the unit n-sphere. For example, it follows from (48) and the properties

noted in obtaining (41) that

E

[
r∏
i=1

(
z′Aiz

z′z

)ki]
=
∫
v′v=1

[
r∏
i=1

(v′Aiv)ki
]

(dv) =
κ!(
n
2

)
k

dκ, (81)

where, as above, κ = (k1, ..., kr), k = |κ|, and κ! =
∏r
i=1 ki!. This generalizes (41), and again holds

under any spherically symmetric density for z.

4. Ratios of Quadratic Forms in Normal Random Variables

4.1 The Problem

With Theorems 4 and 5, we now have practical ways of computing top-order invariant polynomials.

These new algorithms allow us to efficiently compute the pdf , the cdf , and the moments of ratios

of quadratic forms in normal random variables. In this section, we demonstrate the value of our

new algorithms by presenting an efficient method for computing the moments of ratios of quadratic

forms in normal random variables. Let z ∼ N(0n, In), A be a symmetric n× n matrix and B be a

positive definite n× n matrix. In this section, we are interested in obtaining an efficient algorithm

for computing the expectation of
(z′Az)p

(z′Bz)q
, (82)

where p is a nonnegative integer and q is a positive real number.15 As discussed before, the

expression for this expectation holds for any spherically symmetric distribution for z, not just the

N(0n, In).

Many estimators in statistics take the form of ratio of quadratic forms in normal random

variables. As a result, the problem of computing the expectation of (82) has attracted the attention

of many researchers.16 A majority of the literature applies Sawa’s (1972) lemma and presents

formulae that are in the form of one-dimensional integrals. For the development of this type of

formula, see the excellent papers of Magnus (1986) and Meng (2005) and the references therein.

Suppose B = PΛP ′, where Λ is a diagonal matrix of the eigenvalues of B and P is a matrix of the

corresponding eigenvectors of B. When n
2 + p > q, the expectation of (82) exists. By combining
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the results of Theorem 6 of Magnus (1986) and Lemma 1 of Meng (2005), we obtain

E

[
(z′Az)p

(z′Bz)q

]
=

1
Γ(q)

∫ ∞
0

tq−1|∆|E[(w′Rw)p]dt, (83)

where ∆ = (In + 2tΛ)−
1
2 , R = ∆A∆, and w ∼ N(0n, In).

Currently, this is the only practical method that can be used for numerical evaluation of

E[(z′Az)p/(z′Bz)q]. However, there are two problems associated with the use of this formula. The

first problem is in the computation of E[(w′Rw)p]. While an explicit formula of this expression is

readily available (see, for example, Lemma 3 of Magnus (1986)), it is computationally expensive to

evaluate this expectation even for moderately large p (say p > 4), especially when this expectation

has to be evaluated many times because its value changes with t inside the integral. The second

problem is that it is difficult to control for the accuracy of the numerical integration. Besides some

special cases, we are unaware of a general result in the literature that allows us to analyze and

control the errors in the numerical integration of (83).17

Smith (1989) provides a very different expression for E[(z′Az)p/(z′Bz)q] for the more general

case of z ∼ N(µ, In). He expresses it in terms of infinite sums of top-order invariant polynomials.

In our notation, his expression is

E

[
(z′Az)p

(z′Bz)q

]
=

2p−qΓ
(
n
2 + p− q

)
βqe−

λ
2 p!

Γ
(
n
2

) ∞∑
j=0

∞∑
k=0

(q)j
(
n
2 + p− q

)
k(

1
2

)
k

(
n
2

)
p+j+k

2k
dp,j,k(A, In − βB, µµ′), (84)

where λ = µ′µ, and β is a constant that satisfies 0 < β < 2/b, with b the largest eigenvalue of

B. Because it involves a doubly infinite series, and the difficulty in evaluating top-order invariant

polynomials with three matrix arguments, Smith’s formula has not been of much practical use.

Smith (1993) makes an attempt to use this formula for the case of p = 1 and with either µ = 0n or

B = In. However, it appears that there is great difficulty in using this formula in the general case.

In this section, for the case µ = 0n we show how our recursive algorithms for top-order invariant

polynomials can greatly simplify the evaluation of E[(z′Az)p/(z′Bz)q]. In addition to numerical

efficiency, our method also provides error control, so we can compute the expectation up to any

desired level of accuracy. The non-zero mean case will be dealt with in a separate paper.
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4.2 Computational Method

We first study the case B = In. For this case, the result is well known — it is a straightforward

extension of equation (41). From Eq.(2.13) of Smith (1989) we have, provided n
2 + p− q > 0,

E

[
(z′Az)p

(z′z)q

]
=

2p−qΓ
(
n
2 + p− q

)
p!

Γ
(
n
2 + p

) dp(A). (85)

It is straightforward to show that this equation also holds for q ≤ 0. Given our recursive algorithm

for computing dp(A), we can easily compute this expectation for all values of p and q.

For the more general case that B is not proportional to an identity matrix, Smith (1993) provides

the following expression (using our notation)

E

[
(z′Az)p

(z′Bz)q

]
=

2p−qΓ
(
n
2 + p− q

)
p!βq

Γ
(
n
2 + p

) ∞∑
j=0

(q)j(
n
2 + p

)
j

dp,j(A, In − βB), (86)

where β is a constant that may be freely chosen in the interval 0 < β < 2/b, with b the largest

eigenvalue of B. Again, we require n
2 + p − q > 0. Given our algorithm for evaluating top-order

invariant polynomials with two matrix arguments, it is rather straightforward to evaluate this series

if we stop the summation at j = M . The only issue is to bound the truncation error if we truncate

at j = M . In the following theorem, we provide a bound for this truncation error.

THEOREM 6. Assume 0 < β ≤ 1/b, where b is the largest eigenvalue of B. A bound on the

truncation error is given by

∞∑
j=M+1

(q)j(
n
2 + p

)
j

dp,j(A, In − βB) ≤ (q)M+1(
n
2 + p

)
M+1

dp(B− 1
2 ÃB−

1
2 )

β
n
2
+p|B|

1
2

−
M∑
j=0

dp,j(Ã, In − βB)

 , (87)

where Ã = A if A is positive semidefinite or p is even and Ã = PD̃P ′ otherwise, with P as the

matrix of the eigenvectors of A, and D̃ as a diagonal matrix of the absolute eigenvalues of A.

For illustrative purpose, we consider an example with n = 20, A a Toeplitz matrix with (i, j)th

element given by (|i− j| − 1)/n2, and B a diagonal matrix with i−th diagonal element bii = i/n2.

Using the choice of β = n (i.e., the reciprocal of the largest eigenvalue of B), Table 1 reports the

value of E[(z′Az)p/(z′Bz)q] for various combinations of p and q, with approximation errors less

than 10−5. In the table, we also report in parentheses the number of terms (M) that we need to

compute in order to achieve the desired level of accuracy. When the error is set to be 10−5, the
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number of terms is quite manageable. In fact, the number of terms is not exceedingly large even

for very high accuracy. For example, when the approximation error is set to be less than 10−10

(10−20), the number of terms required for p = q = 10 is M = 421 (797) instead of M = 257, so the

algorithm is quite efficient.18

Table 1: Expectation of Ratio of Quadratic Forms in Central Normal Random
Variables

The table presents E[(z′Az)p/(z′Bz)q] for various values of p and q, where z ∼ N(0n, In), n = 20, A is
a Toeplitz matrix with its (i, j)th element as aij = (|i− j| − 1)/n2 and B is a diagonal matrix with its
ith diagonal element as bii = i/n2. The approximation error is set to be less than 10−5 and the number
of terms required to achieve this level of accuracy is reported in the parentheses.

q = 1 q = 2 q = 3 q = 4 q = 5 q = 10

p = 0 2.17970 5.52039 16.55785 60.28059 275.30455 n/a
(30) (44) (64) (91) (130)

p = 1 −0.09809 −0.22082 −0.57952 −1.80842 −6.88261 −904575.08083
(30) (44) (63) (89) (125) (530)

p = 2 0.48712 0.98413 2.28489 6.19428 20.00257 380477.23086
(26) (37) (52) (71) (98) (420)

p = 3 0.16653 0.30414 0.62963 1.49641 4.14679 17399.85368
(36) (51) (70) (95) (128) (468)

p = 4 0.99067 1.66089 3.13318 6.72564 16.65035 28182.05694
(29) (39) (52) (68) (89) (333)

p = 5 1.38677 2.13748 3.67192 7.09659 15.60182 9986.85442
(47) (64) (84) (109) (142) (446)

p = 10 2321.96818 2564.18967 3069.43017 4003.06705 5720.63501 174918.10486
(51) (63) (76) (90) (107) (257)

5. Conclusion

Despite the importance of top-order invariant polynomials in finite sample theory in multivariate

statistics, their use in practical applications has been greatly limited by the difficulties of their

numerical evaluation. In this paper, we overcome this problem by proposing two efficient algorithms

for computing top-order invariant polynomials. With our new algorithms, the use of top-order

invariant polynomials in applied work can now become a reality.19 As an application, we use our

new algorithm to develop an efficient method for computing the moments of ratio of quadratic forms

in normal random variables. Unlike existing methods which typically rely on numerical integration,
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our method has the advantages of being both fast and reliable even for very high order moments.

For future research, we plan to extend the recursive algorithms in this paper to other applications

like the numerical evaluation of probability density function of ratio of quadratic forms in normal

random variables.
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Appendix

Proof of THEOREM 1. Define

F (t) =

(
s∏
i=1

(1− tλi)

)
|In − tA|−

1
2 =

(
s∑
i=0

ẽit
i

)( ∞∑
i=0

dit
i

)
≡
∞∑
i=0

fit
i, (A1)

for t sufficiently small such that 1− tλi is positive. Comparing the coefficient of ti, it is easy to see

that

fi =
min[i,s]∑
j=0

ẽjdi−j . (A2)

Differentiating F (t) with respect to t, we have

F ′(t) =

(
s∑
i=1

iẽit
i−1

)
|In − tA|−

1
2 +

(
s∑
i=0

ẽit
i

)
1
2

tr(A(In − tA)−1)|In − tA|−
1
2

⇒
∞∑
i=1

ifit
i−1 =

(
s∑
i=1

iẽit
i−1

)( ∞∑
i=0

dit
i

)
+

1
2

(
s∑
i=0

ẽit
i

)( ∞∑
i=1

pit
i−1

)( ∞∑
i=0

dit
i

)

⇒
∞∑
i=1

ifit
i−1 =

(
s∑
i=1

iẽit
i−1

)( ∞∑
i=0

dit
i

)
+

1
2

( ∞∑
i=1

τ it
i−1

)( ∞∑
i=0

dit
i

)
, (A3)

where

τ i =
min[i−1,s]∑

j=0

ẽjpi−j . (A4)

The second equality follows because tr(A(In − tA)−1) = P (t)/t =
∑∞

i=1 pit
i−1. Note that

∞∑
i=1

τ it
i−1 =

[
s∏
i=1

(1− tλi)

]
tr(A(In − tA)−1) =

[
s∏
i=1

(1− tλi)

]
n∑
i=1

λi
1− tλi

, (A5)

and since the right hand side is a polynomial of order s−1 in t, we have τ i = 0 for i > s. Therefore,

(A3) can be written as
∞∑
i=1

ifit
i−1 =

(
s∑
i=1

iẽit
i−1

)( ∞∑
i=0

dit
i

)
+

1
2

(
s∑
i=1

τ it
i−1

)( ∞∑
i=0

dit
i

)
. (A6)

Comparing the coefficients of tk−1 on both sides of (A6), we obtain the following identity

kfk =
min[k,s]∑
i=1

iẽidk−i +
1
2

min[k,s]∑
i=1

 i−1∑
j=0

ẽjpi−j

 dk−i

⇒ k

min[k,s]∑
i=0

ẽidk−i =
min[k,s]∑
i=1

(
iẽi +

∑i−1
j=0 ẽjpi−j

2

)
dk−i

⇒ dk =
min[k,s]∑
i=1

(ci
k
− ẽi

)
dk−i, (A7)
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where

ci = iẽi +

∑i−1
j=0 ẽjpi−j

2
. (A8)

When ni = m for i = 1, . . . , s, we can use the fact that pi = m
∑s

j=1 λ
i
j and the Newton-Girard

formula to show that
∑i−1

j=0 ẽjpi−j = −miẽi and hence ci =
(
1− m

2

)
iẽi. In this case, the recursive

relation can be simplified to

dk =
min[k,s]∑
i=1

[
(2−m)i

2k
− 1
]
ẽidk−i. (A9)

The proof of the result for the case of distinct roots is given in the text in Section 2.2. �

Proof of THEOREM 2. We first multiply both sides of (36) by (1 − tλi)mi and denote the

function (1− tλi)miH̃(t) on the left by

Pi(t) =
s∏
j=1
j 6=i

(1− tλj)−mj , (A10)

and the terms on the right that do not involve λi by H̃i(t). Then

Pi(t) =
[
ai,mi + ai,mi−1(1− tλi) + · · ·+ ai,1(1− tλi)mi−1

]
+ (1− tλi)miH̃i(t). (A11)

Setting t = λ−1
i gives at once

ai,mi =
s∏
j=1
j 6=i

(
λi

λi − λj

)mj
. (A12)

Next, differentiating both sides of (A11) with respect to t r times and setting t = λ−1
i gives

r!(−λi)rai,mi−r =
∂rPi(t)
∂tr

∣∣∣∣
t=λ−1

i

. (A13)

Now, since

1− tλj =
(
λi − λj
λi

)(
1− (t− λ−1

i )
λiλj
λi − λj

)
=
(
λi − λj
λi

)(
1− t̃ λiλj

λi − λj

)
, (A14)

where t̃ = t− λ−1
i , we can write

Pi(t) =
s∏
j=1
j 6=i

(
λi

λi − λj

)mj  s∏
j=1
j 6=i

(
1− t̃ λiλj

λi − λj

)−mj . (A15)
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But, by definition, the second term is the generating function of the complete homogeneous sym-

metric functions of the eigenvalues of −λiBi. The coefficient of the term t̃r is thus (−λi)rhr(Bi).

Therefore,
∂rPi(t)
∂tr

∣∣∣∣
t=λ−1

i

=
∂rPi(t)
∂t̃r

∣∣∣∣
t̃=0

= r!(−λi)r
s∏
j=1
j 6=i

(
λi

λi − λj

)mj
hr(Bi), (A16)

and so

ai,mi−r =
s∏
j=1
j 6=i

(
λi

λi − λj

)mj
hr(Bi). (A17)

�

Proof of LEMMA 1. Substituting (37) in (40), we have

pFq

(
1
2
, α2, · · · , αp;β1, · · · , βq;A

)
=

∞∑
k=0

(α2)k · · · (αp)k
(β1)k · · · (βq)k

s∑
i=1

mi∑
j=1

ai,j
(j)kλki
k!

=
s∑
i=1

mi∑
j=1

ai,jpFq(j, α2,· · ·, αp;β1,· · ·, βq;λi). (A18)

�

Proof of LEMMA 2. First define, for each κ ∈ C(k, r), the sequence of partial sums in reverse

order:

s(κ) = (sr−1(κ), ..., s1(κ)), (A19)

with si(κ) = Σi
j=1kj . It is easy to check that the map κ→ s(κ) is 1–1. We can define a total order

on C(k, r)×C(k, r) — lexicographic order on the s(κ) — as follows: first order in ascending order of

the sr−1(κ), then in ascending order of the sr−2(κ), etc. That is, sr−1(ν) < sr−1(κ) implies that ν

precedes κ (written as ν < κ). The number of ν’s that satisfy sr−1(ν) < sr−1(κ) is the same as the

number of non-increasing sequences of length r− 1 with terms chosen from {0, 1, . . . , sr−1(κ)− 1},

namely

fsr−1(κ),r−1 =
(
r + sr−1(κ)− 2

r − 1

)
.

But also, ν < κ if sr−1(κ) = sr−1(ν) and sr−2(ν) < sr−2(κ), and the number of these is the

number of non-increasing sequences of length r− 2 with terms chosen from {0, 1, . . . , sr−2(κ)− 1},
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namely

fsr−2(κ),r−2 =
(
r + sr−2(κ)− 3

r − 2

)
.

Continuing in this way, ν precedes κ if the first nonvanishing term in s(ν)− s(κ) is negative, and

the total number of sequences ν that precede κ in this ordering is

r−1∑
i=1

(
i+ si(κ)− 1

i

)
. (A20)

Hence, in this ordering, κ is assigned the number nk(κ) given in the Lemma. �

Proof of THEOREM 6. Under the assumption of 0 < β ≤ 1/b, In−βB is positive semidefinite.

Therefore, when A is positive semidefinite or p is even, the remainder terms are positive. Using

the fact that n
2 + p > q, we have (q)j/

(
n
2 + p

)
j
≤ (q)M+1/

(
n
2 + p

)
M+1

for j > M . It follows that

∞∑
j=M+1

(q)j(
n
2 + p

)
j

dp,j(A, In − βB) ≤ (q)M+1(
n
2 + p

)
M+1

∞∑
j=M+1

dp,j(A, In − βB). (A21)

The generating function of di,j(A, In − βB) is given by

|In − t1A− t2(In − βB)|−
1
2 =

∞∑
i=0

∞∑
j=0

di,j(A, In − βB)ti1t
j
2. (A22)

Putting t2 = 1, the equation becomes

|βB|−
1
2

∣∣∣∣∣In − t1B−
1
2AB−

1
2

β

∣∣∣∣∣
− 1

2

=
∞∑
i=0

∞∑
j=0

di,j(A, In − βB)ti1. (A23)

Comparing the coefficient of tp1 on both sides, we get

∞∑
j=0

dp,j(A, In − βB) = |βB|−
1
2dp

(
B−

1
2AB−

1
2

β

)
=
dp(B−

1
2AB−

1
2 )

β
n
2
+p|B|

1
2

. (A24)

It follows that

∞∑
j=M+1

dp,j(A, In − βB) =
∞∑
j=0

dp,j(A, In − βB)−
M∑
j=0

dp,j(A, In − βB)

=
dp(B−

1
2AB−

1
2 )

β
n
2
+p|B|

1
2

−
M∑
j=0

dp,j(A, In − βB). (A25)
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When A is not positive semidefinite and p is odd, we have |z′Az| = |z′PDP ′z| ≤ z′PD̃P ′z = z′Ãz.

Using the fact that z′(In − βB)z ≥ 0, we have |(z′Az)p(z′(In − βB)z)j | ≤ (z′Ãz)p(z′(In − βB)z)j

and it follows that∣∣∣∣∣∣
∞∑

j=M+1

(q)j(
n
2 + p

)
j

dp,j(A, In − βB)

∣∣∣∣∣∣ ≤
∞∑

j=M+1

(q)j(
n
2 + p

)
j

dp,j(Ã, In − βB), (A26)

and the bound is obtained using the same derivation as before since Ã is positive semidefinite. �
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Notes

1In general the zonal polynomials of degree k are indexed by partitions of k with n or fewer
parts, κ = (k1, ..., kn), where k1 ≥ k2 ≥ ... ≥ kn ≥ 0 and

∑n
i=1 ki = k. When k1 = k is the only

nonzero part of the partition, so that κ = (k, 0, ..., 0) is the top-order partition of k, we denote
Cκ(A) simply by Ck(A).

2Hillier (2001) provides a different expression for dk when some of the eigenvalues are repeated.

3We use here the familiar Newton identity relating the terms in a product of two power series
to the terms in the component series:( ∞∑

i=0

ait
i

) ∞∑
j=0

bjt
j

 =

 ∞∑
j=0

cjt
j


with cj =

∑j
i=0 aibj−i. In addition, using the fact that H(t) = D(t)2 and the Newton identity, we

have hk =
∑k

i=0 didk−i.

4Theorem 1 can be easily generalized to provide fast recursive algorithms for computing top-
order Jack polynomials, which are generalizations of the zonal polynomials. See Stanley (1989,
Proposition 2.2) for various explicit expressions of top-order Jack polynomials.

5In addition, there is also less memory requirement for our algorithm because we only need to
store dk−s to dk−1 for the recursion to continue. In contrast, Ruben’s algorithm requires the storage
of d0 to dk−1, so memory requirement goes up with k.

6Mahoney and Sivazlian (1983) provide a review and comparison of various computational meth-
ods for performing partial fractions expansions, for contexts similar to that discussed here. Using
our fast recursive algorithm in Theorem 1 to compute hr(Bi), we can compute all the ai,j ’s with
O(ms) arithmetic operations. In comparison, the most efficient method described in Mahoney and
Sivazlian (1983) takes O(m2) arithmetic operations to compute the partial fractions expansion, so
our method is faster especially when s is small relative to m. In addition, our algorithm is suitable
for parallel computing because ai,j ’s can be calculated independently across i.

7An efficient algorithm for evaluating hypergeometric function of matrix argument has been
recently developed by Koev and Edelman (2006). However, for the special kind of hypergeometric
function in (40), our algorithm is significantly faster.

8Although the probability is independent of β, the choice of β can affect the speed of convergence.
Ruben (1962) recommends using β = 2/(λ−1

1 + λ−1
s ) but the optimal choice of β is not well

understood.

9Using Ruben’s recursive algorithm for computing dk, Farebrother (1984) develops a computer
program for approximating the cdf of w based on (43).

10In the literature, the standard notation for top-order invariant polynomials is Ck1,...,krk1+···+kr(A1, · · · , Ar).
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Since we are only dealing with top order invariant polynomials in this paper, we suppress k1+· · ·+kr
to economize on notation.

11For example in Mathematica, we can obtain the coefficients eκ using the following command:
CoefficientList[Det[IdentityMatrix[n]-t1*A1-...-tr*Ar],{t1,...,tr}].

12In combinatorics, a bracelet is the lexicographically smallest element in an equivalence class of
strings under string rotation and reversal.

13Details of the proof are available upon request.

14We can also use our approach to evaluate the expansion A(t)k =
∑
|κ|=k Aκt

κ and obtain pκ

directly using pκ = tr(Aκ). The reason why we do the expansion of
∑n

i=1 e
′
iA(t)kei instead is

because it allows us to save memory space by a factor of n.

15If z ∼ N(0n,Σ), where Σ is a positive definite matrix, then it can be easily converted into our
problem by writing (z′p/(z′q = (z̃Ãz̃)p/(z̃′B̃z̃)q, where z̃ = Σ−

1
2 z ∼ N(0n, In), Ã = Σ

1
2AΣ

1
2 and

B̃ = Σ
1
2BΣ

1
2 .

16Mathai and Provost (1992, Section 4.5) provide a good review of the existing literature on
ratios of quadratic forms in normal random variables.

17A notable exception is De Gooijer (1980), in which he gives bounds on the numerical integration
error for the special case of p = q = 1 or 2.

18The numbers in Table 1 are computed using Mathematica with infinite precision. Even with
approximation errors of less than 10−20, none of the numbers in the table take more than one
minute to compute using an Opteron 165 machine.

19A set of Matlab programs that implement the algorithms in the paper is available from the
authors upon request.
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