21,062 research outputs found

    Phase transition in the sample complexity of likelihood-based phylogeny inference

    Full text link
    Reconstructing evolutionary trees from molecular sequence data is a fundamental problem in computational biology. Stochastic models of sequence evolution are closely related to spin systems that have been extensively studied in statistical physics and that connection has led to important insights on the theoretical properties of phylogenetic reconstruction algorithms as well as the development of new inference methods. Here, we study maximum likelihood, a classical statistical technique which is perhaps the most widely used in phylogenetic practice because of its superior empirical accuracy. At the theoretical level, except for its consistency, that is, the guarantee of eventual correct reconstruction as the size of the input data grows, much remains to be understood about the statistical properties of maximum likelihood in this context. In particular, the best bounds on the sample complexity or sequence-length requirement of maximum likelihood, that is, the amount of data required for correct reconstruction, are exponential in the number, nn, of tips---far from known lower bounds based on information-theoretic arguments. Here we close the gap by proving a new upper bound on the sequence-length requirement of maximum likelihood that matches up to constants the known lower bound for some standard models of evolution. More specifically, for the rr-state symmetric model of sequence evolution on a binary phylogeny with bounded edge lengths, we show that the sequence-length requirement behaves logarithmically in nn when the expected amount of mutation per edge is below what is known as the Kesten-Stigum threshold. In general, the sequence-length requirement is polynomial in nn. Our results imply moreover that the maximum likelihood estimator can be computed efficiently on randomly generated data provided sequences are as above.Comment: To appear in Probability Theory and Related Field

    Tur\`an numbers of Multiple Paths and Equibipartite Trees

    Full text link
    The Tur\'an number of a graph H, ex(n;H), is the maximum number of edges in any graph on n vertices which does not contain H as a subgraph. Let P_l denote a path on l vertices, and kP_l denote k vertex-disjoint copies of P_l. We determine ex(n, kP_3) for n appropriately large, answering in the positive a conjecture of Gorgol. Further, we determine ex (n, kP_l) for arbitrary l, and n appropriately large relative to k and l. We provide some background on the famous Erd\H{o}s-S\'os conjecture, and conditional on its truth we determine ex(n;H) when H is an equibipartite forest, for appropriately large n.Comment: 17 pages, 13 figures; Updated to incorporate referee's suggestions; minor structural change

    Cohen-Macaulay Properties of Square-Free Monomial Ideals

    Get PDF
    In this paper we study simplicial complexes as higher dimensional graphs in order to produce algebraic statements about their facet ideals. We introduce a large class of square-free monomial ideals with Cohen-Macaulay quotients, and a criterion for the Cohen-Macaulayness of facet ideals of simplicial trees. Along the way, we generalize several concepts from graph theory to simplicial complexes.Comment: 28 pages, 17 figure

    Odd-Cycle-Free Facet Complexes and the K\"onig property

    Full text link
    We use the definition of a simplicial cycle to define an odd-cycle-free facet complex (hypergraph). These are facet complexes that do not contain any cycles of odd length. We show that besides one class of such facet complexes, all of them satisfy the K\"onig property. This new family of complexes includes the family of balanced hypergraphs, which are known to satisfy the K\"onig property. These facet complexes are, however, not Mengerian; we give an example to demonstrate this fact.Comment: 12 pages, 11 figure
    corecore