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Abstract

In this paper, we study simplicial complexes as higher-dimensional graphs in order to produce
algebraic statements about their facet ideals. We introduce a large class of square-free monomial
ideals with Cohen–Macaulay quotients, and a criterion for the Cohen–Macaulayness of facet ideals
of simplicial trees. Along the way, we generalize several concepts from graph theory to simplicial
complexes.
© 2004 Elsevier Inc. All rights reserved.

MSC:13.05

Keywords:Square-free monomials; Cohen–Macaulay; Facet ideals; Simplicial trees

1. Introduction

From the point of view of commutative algebra, the focus of this paper is on finding square-
free monomial ideals that have Cohen–Macaulay quotients. In[Vi1] Villarreal proved a
criterion for the Cohen–Macaulayness of edge ideals of graphs that are trees. Edge ideals
are square-free monomial ideals where each generator is a product of two-distinct variables
of a polynomial ring. These ideals have been studied extensively by Villarreal, Vasconcelos
and Simis among others. In[Fa] we studied a generalization of this concept; namely the
facet idealof a simplicial complex. By generalizing the definition of a “tree” to simplicial
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complexes, we extended the results of[SVV] from the class of edge ideals to all square-free
monomial ideals.

Below we investigate the structure of simplicial complexes in order to show that Vil-
larreal’s Cohen–Macaulay criterion for graph-trees extends to simplicial trees (Corollary
8.3). This is of algebraic and computational significance, as it provides an effective criterion
for Cohen–Macaulayness that works for a large class of square-free monomial ideals. We
introduce a condition on a simplicial complex that ensures the Cohen–Macaulayness of
its facet ideal, and a method to build a Cohen–Macaulay ideal from any given square-free
monomial ideal. Along the road to the algebraic goal, this study sheds light on the beautiful
combinatorial structure of simplicial complexes.

The paper is organized as follows: Sections2–4 review the basic definitions and cover the
elementary properties of trees. In Section5, we draw comparisons between graph theory
and simplicial complex theory, and prove a generalized version of König’s theorem in
graph theory for simplicial complexes. We then go on to prove a structure theorem for
unmixed trees in Section6. We introduce the notion of agrafted simplicial complex in
Section7, and show that for simplicial trees, being grafted and being unmixed are equivalent
conditions. The notion of grafting brings us to Section8, where we prove that grafted
simplicial complexes are Cohen–Macaulay, from which it follows that a simplicial tree is
unmixed if and only if it is Cohen–Macaulay.

2. Definitions and notation

In this section, we define the basic notions that we will use later in the paper. Some of
the proofs that appeared earlier in[Fa] have been omitted here; we refer the reader to the
relevant sections of[Fa] when that is the case.

Definition 2.1 (Simplicial complex, facet and more). A simplicial complex� over a set of
verticesV = {v1, . . . , vn} is a collection of subsets ofV, with the property that{vi} ∈ � for
all i, and ifF ∈ � then all subsets ofF are also in� (including the empty set). An element
of � is called afaceof �, and thedimensionof a faceF of � is defined as|F | − 1, where
|F | is the number of vertices ofF. The faces of dimensions 0 and 1 are calledverticesand
edges, respectively, and dim∅ = −1.

The maximal faces of� under inclusion are calledfacetsof �. The dimension of the
simplicial complex� is the maximal dimension of its facets; in other words

dim � = max{dim F |F ∈ �}.
We denote the simplicial complex� with facetsF1, . . . , Fq by

� = 〈F1, . . . , Fq〉
and we call{F1, . . . , Fq} thefacet setof �.

A simplicial complex with only one facet is called asimplex.

Definition 2.2 (Subcollection). By a subcollectionof a simplicial complex� we mean a
simplicial complex whose facet set is a subset of the facet set of�.
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Definition 2.3 (Connected simplicial complex). A simplicial complex� = 〈F1, . . . , Fq〉
is connectedif for every pairi, j , 1� i < j�q, there exists a sequence of facets

Ft1, . . . , Ftr

of � such thatFt1 = Fi , Ftr = Fj and

Fts ∩ Fts+1 �= ∅
for s = 1, . . . , r − 1.

An equivalent definition is stated on p. 222 of[BH] : � as above isdisconnectedif its
vertex setV can be partitioned asV = V1 ∪ V2, whereV1 andV2 are non-empty subsets of
V, such that no facet of� has vertices in bothV1 andV2. Otherwise� is connected.

Definition 2.4 (Facet ideal, non-face ideal). Let� be a simplicial complex overn vertices
labeledv1, . . . , vn. Let k be a field,x1, . . . , xn be indeterminates, andR be the polynomial
ring k[x1, . . . , xn].

(a) We defineF(�) to be the ideal ofRgenerated by all the square-free monomialsxi1 . . . xis ,
where{vi1, . . . , vis } is a facet of�. We callF(�) thefacet idealof �.

(b) We defineN (�) to be the ideal ofR generated by all the square-free monomials
xi1 . . . xis , where{vi1, . . . , vis } is not a face of�. We call N (�) the non-face ideal
or theStanley–Reisner idealof �.

We refer the reader to[S,BH] for an extensive coverage of the theory of Stanley–Reisner
ideals.

Throughout this paper we often usex1, . . . , xn to denote both the vertices of� and the
variables appearing inF(�).

Definition 2.5 (Facet complex, non-face complex). LetI = (M1, . . . ,Mq) be an ideal in a
polynomial ringk[x1, . . . , xn], wherek is a field andM1, . . . ,Mq are square-free monomials
in x1, . . . , xn that form a minimal set of generators forI.

(a) We define�F (I ) to be the simplicial complex over a set of verticesv1, . . . , vn with
facetsF1, . . . , Fq , where for eachi, Fi = {vj | xj |Mi, 1�j�n}. We call�F (I ) the
facet complexof I.

(b) We define�N (I ) to be the simplicial complex over a set of verticesv1, . . . , vn, where
{vi1, . . . , vis } is a face of�N (I ) if and only ifxi1 . . . xis /∈ I . We call�N (I ) thenon-face
complexor theStanley–Reisner complexof I.

Facet ideals give a one-to-one correspondence between simplicial complexes and square-
free monomial ideals.

Notice that given a square-free monomial idealI in a polynomial ringk[x1, . . . , xn], the
vertices of�F (I )are those variables that divide a monomial in the generating set ofI; this set
may not necessarily include all elements of{x1, . . . , xn}. The fact that some extra variables
may appear in the polynomial ring does not affect the algebraic or combinatorial structure
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of �F (I ). On the other hand, if� is a simplicial complex, being able to consider the facet
ideals of its subcomplexes as ideals in the same ring simplifies many of our discussions.

Example 2.6. Let � be the simplicial complex below.

u x v

zy

HereN (�) = (yv, zu, uv), F(�) = (xyu, xyz, xzv) are ideals in the polynomial ring
k[x, y, z, u, v].

Example 2.7. If I = (xy, xz) ⊆ k[x, y, z], then�N (I ) is the 1-dimensional simplicial
complex:

zy

x

and�F (I ) is the simple graph

zy

x

In this special caseI is also called theedge idealof the graph�F (I ) (this terminology is
due to Villarreal; see[Vi1] ).

We now generalize some notions from graph theory to simplicial complexes.

Definition 2.8 (Minimal vertex cover, vertex covering number, unmixed). Let � be a sim-
plicial complex with vertex setV and facetsF1, . . . , Fq . A vertex coverfor � is a subsetA
of V, with the property that for every facetFi there is a vertexv ∈ A such thatv ∈ Fi . A
minimal vertex coverof � is a subsetA of V such thatA is a vertex cover, and no proper
subset ofA is a vertex cover for�. The smallest cardinality of a vertex cover of� is called
thevertex covering numberof � and is denoted by�(�).

A simplicial complex� is unmixedif all of its minimal vertex covers have the same
cardinality.

Note that a simplicial complex may have several minimal vertex covers.
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Definition 2.9 (Independent set, independence number). Let� be a simplicial complex. A
set{F1, . . . , Fu} of facets of� is called anindependent setif Fi ∩Fj = ∅ wheneveri �= j .
The maximum possible cardinality of an independent set of facets in�, denoted by�(�),
is called theindependence numberof �. An independent set of facets which is not a proper
subset of any other independent set is called amaximal independent setof facets.

Example 2.10. If � is the simplicial complex

x

y

z

u

v

then�(�) = 2. Also, � is unmixed as its minimal vertex covers, listed below, all have
cardinality equal to two:

{x, u}, {y, u}, {y, v}, {z, u}, {z, v}.
This, by the way, is an example of a “grafted” tree (see Definitions3.5and7.1). We show

later in the paper that all grafted trees are unmixed.
The graph�F (I ) in Example2.7, however, is not unmixed. This is because{x} and{y, z}

are both minimal vertex covers for�F (I ) of different cardinalities. In this case�(�F (I )) =
�(�F (I )) = 1. The same argument shows that the simplicial complex in Example2.6 is
not unmixed.

The following is an easy but very useful observation; see Proposition 1 in[Fa] for a proof.

Proposition 2.11. Let � be a simplicial complex over n vertices labeledx1, . . . , xn. Con-
sider the idealI = F(�) in the polynomial ringR = k[x1, . . . , xn] over a field k. Then
an idealp = (xi1, . . . , xis ) of R is a minimal prime of I if and only if{xi1, . . . , xis } is a
minimal vertex cover for�.

We say that a simplicial complex� over a set of verticesx1, . . . , xn is Cohen–Macaulay
if for a given fieldk, the quotient ring

k[x1, . . . , xn]/F(�)

is Cohen–Macaulay. It follows directly from Proposition2.11, or from an elementary duality
with Stanley–Reisner theory discussed in Corollary 2 of[Fa], that in order for� to be
Cohen–Macaulay, it has to be unmixed.

Proposition 2.12(A Cohen–Macaulay simplicial complex is unmixed). Suppose that� is
a simplicial complex with vertex setx1, . . . , xn. If k[x1, . . . , xn]/F(�) is Cohen–Macaulay,
then� is unmixed.
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Discussion 2.13.It is worth observing that for a square-free monomial idealI, there is
a natural way to construct�N (I ) and�F (I ) from each other using the structure of the
minimal primes ofI. To do this, consider the vertex setV consisting of all variables that
divide a monomial in the generating set ofI. The following correspondence holds:

F = facet of�N (I )←→ V \F = minimal vertex cover of�F (I ).

Also

I =
⋂

p,

where the intersection is taken over all prime idealspof k[V ] that are generated by a minimal
vertex cover of�F (I ) (or equivalently, primesp that are generated byV \F , whereF is a
facet of�N (I ); see[BH, Theorem 5.1.4]).

Regarding the dimension and codimension ofI, note that by Theorem 5.1.4 of[BH] and
the discussion above, settingR = k[V ] as above, we have

dim R/I = dim �N (I )+ 1= |V | − vertex covering number of�F (I )

and

heightI = vertex covering number of�F (I ).

We illustrate all this through an example.

Example 2.14.For I = (xy, xz), where�F (I ) and�N (I ) are drawn in Example2.7, we
have:

facets of�N (I ) minimal vertex covers of�F (I )

{x} {y, z}
{y, z} {x}

Note thatI = (x) ∩ (y, z), and

dim k[x, y, z]/(xy, xz) = 2

as asserted in Discussion2.13above.

A notion crucial to the rest of the paper is “removing a facet”. We want the removal of a
facet from a simplicial complex to correspond to dropping a generator from its facet ideal.
We record this definition.

Definition 2.15 (Facet removal). Suppose� is a simplicial complex with facetsF1, . . . , Fq

andF(�) = (M1, . . . ,Mq) its facet ideal inR = k[x1, . . . , xn]. The simplicial complex
obtained byremoving the facetFi from � is the simplicial complex

�\〈Fi〉 = 〈F1, . . . , F̂i , . . . , Fq〉.
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Note thatF(�\〈Fi〉) = (M1, . . . , M̂i, . . . ,Mq).
Also note that the vertex set of�\〈Fi〉 is a subset of the vertex set of�.

Example 2.16.Let� be the simplicial complex in Example2.10with facetsF = {x, y, z},
G = {y, z, u} andH = {u, v}. Then�\〈F 〉 = 〈G,H 〉 is a simplicial complex with vertex
set{y, z, u, v}.

3. Trees

In [Fa], we extended the notion of a “tree” from graphs to simplicial complexes. The
construction, at the time, was motivated by two factors: the restriction to graphs should
produce the classic graph-theoretical definition of a tree, and the new structure should fit
into a machinery that proves that the facet ideal of a tree satisfies Sliding Depth condition
[Fa, Theorem 1].

The resulting definition not only satisfies those two properties, but as we prove later in this
paper, it also generalizes graph-trees in the sense of Cohen–Macaulayness, which confirms
that algebraically this in fact is the optimal way to extend the definition of a tree.

Recall that a connected graph is a tree if it has no cycles; for example, a triangle is not
a tree. An equivalent definition states that a connected graph is a tree if every subgraph
has aleaf, where a leaf is a vertex that belongs to only one edge of the graph. This latter
description is the one that we adapt, with a slight change in the definition of a leaf, to the
class of simplicial complexes.

Definition 3.1 (Leaf, joint, universal set). Suppose that� is a simplicial complex. A facet
F of � is called aleaf if either F is the only facet of�, or there exists a facetG in �\〈F 〉,
such that

F ∩ F ′ ⊆ F ∩G
for every facetF ′ ∈ �\〈F 〉.

The set of allG as above is denoted byU�(F ) and called theuniversal setof F in �. If
G ∈ U�(F ) andF ∩G �= ∅, thenG is called ajoint of F.

Another way to describe a leaf is the following: (with assumptions as above)F is a leaf
if eitherF is the only facet of� or the intersection ofF with the simplicial complex�\〈F 〉
is a face of�\〈F 〉.

Definition 3.2 (Free vertex). A vertex of a simplicial complex� is free if it belongs to
exactly one facet of�.

In order to be able to quickly identify a leaf in a simplicial complex, it is important to
notice that a leaf must have a free vertex. This follows easily from Definition3.1: otherwise,
a leafF would be contained in its joints, which would contradict the fact that a leaf is a
facet.



306 S. Faridi / Journal of Combinatorial Theory, Series A 109 (2005) 299 – 329

Example 3.3. The simplicial complex in Example2.6has two leaves:{x, y, u}and{x, z, v}.
The one below has no leaves, because every vertex is shared by at least two facets.

Example 3.4. In the simplicial complex below with facetsF1 = {a, b, c}, F2 = {a, c, d}
andF3 = {b, c, d, e}, the only candidate for a leaf is the facetF3 (as it is the only facet with
a free vertex), but neither one ofF1 ∩ F3 or F2 ∩ F3 is contained in the other, so there are
no leaves.

b c

d

e

a

Definition 3.5 (Tree). Suppose that� is a connected simplicial complex. We say that� is
a tree if every non-empty subcollection of� (including� itself) has a leaf.

Equivalently, a connected simplicial complex� is a tree if every non-emptyconnected
subcollection of� has a leaf.

Definition 3.6 (Forest). A simplicial complex� with the property that every connected
component of� is a tree is called aforest. In other words, a forest is a simplicial complex
with the property that every non-empty subcollection has a leaf.

The simplicial complex in Example2.6 above is a tree, whereas the ones in Examples
3.3and3.4are not, as they have no leaves.

Here is a slightly less straightforward example:

Example 3.7. The simplicial complex on the left is not a tree, because although all three
facets{x, y, u}, {x, v, z} and {y, z,w} are leaves, if one removes the facet{x, y, z}, the
remaining simplicial complex (on the right) has no leaf.

x

u

z w

y

v

remove {x,y,z}
 x

u

z w

y

v
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Notice that in the case that� is a graph, Definition3.5agrees with the definition of a tree
in graph theory, with the difference that now the term “leaf” refers to an edge, rather than
a vertex.

4. Basic properties of trees

Lemma 4.1(A tree has at least two leaves). Let� be a tree of two or more facets. Then�
has at least two leaves.

Proof. Suppose that� hasq facetsF1, . . . , Fq whereq�2. We prove the lemma by
induction onq.

The caseq = 2 follows from the definition of a leaf.
To prove the general case suppose thatF1 is a leaf of� andG1 ∈ U�(F1). Consider the

subcomplex�′ = 〈F2, . . . , Fq〉 of �. By induction hypothesis�′ has two-distinct leaves;
sayF2 andF3 are those leaves. At least one ofF2 andF3 must be different fromG1; say
F2 �= G1. We show thatF2 is a leaf for�.

Let G2 ∈ U�′(F2). Given any facetFi with i �= 1,2, we already know by the fact that
F2 is a leaf of�′

Fi ∩ F2 ⊆ G2 ∩ F2.

We need to verify this fori = 1.
SinceF1 is a leaf for� andF2 �= F1,

F2 ∩ F1 ⊆ G1 ∩ F1.

Intersecting both sides of this inclusion withF2, we obtain

F2 ∩ F1 ⊆ G1 ∩ F1 ∩ F2 ⊆ G1 ∩ F2 ⊆ G2 ∩ F2

where the last inclusion holds becauseG1 �= F2 andF2 is a leaf of�′.
It follows thatF2, as well asF1, is a leaf for�. �
A promising property of trees from an algebraic point of view is that they behave well

under localization, i.e. the localization of a tree is a forest.This property is in particular useful
when making inductive arguments on trees, as localization usually corresponds to reducing
the number of vertices of a simplicial complex. Before proving this, we first determine what
the localization of a simplicial complex precisely looks like.

Discussion 4.2(On the localization of a simplicial complex). Suppose that

� = 〈F1, . . . , Fq〉
is a simplicial complex over the vertex setV = {x1, . . . , xn}. Let p be a prime ideal of
k[x1, . . . , xn] generated by a subset of{x1, . . . , xn} that containsI = F(�) (We show later
in the proof of Lemma4.5that this is the main case that we need to study). We would like
to see what the simplicial complex associated toIp looks like.
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So

p = (xi1, . . . , xir ).

Now suppose

I = (M1, . . . ,Mq),

where eachMi is the monomial corresponding to the facetFi . It follows that

Ip = (M ′1, . . . ,M ′q),

where eachM ′i is obtained by dividingMi by the product of all the variables inV \{xi1, . . . ,
xir } that appear inMi . Some of the monomials in the generating set ofIp are redundant
after this elimination, so without loss of generality we can write:

Ip = (M ′1, . . . ,M ′t ), (1)

whereM ′t+1, . . . ,M
′
q are the redundant monomials.

We use the notation�F (Ip) to indicate the simplicial complex associated to the monomial
ideal with the same generating set as the one described forIp in (1), in the polynomial ring
k[xi1, . . . , xir ]. It follows that:

�F (Ip) = 〈F ′1, . . . , F ′t 〉,
where for eachi,

F ′i = Fi ∩ {xi1, . . . , xir }
andF ′t+1, . . . , F

′
q each contain at least one ofF ′1, . . . , F ′t . This simplicial complex is called

the localizationof � at the prime idealp.
Note that every minimal vertex coverA of � that is contained in{xi1, . . . , xir } remains a

minimal vertex cover of�F (Ip), as the minimal prime overI generated by the elements of
A remains a minimal prime ofIp.

Moreover, if� is unmixed then�F (Ip) is also unmixed. Algebraically, this is easy to
see, as the height of the minimal primes ofIp remain the same. One can also see it from a
combinatorial argument: IfB ⊆ {xi1, . . . , xir } is a minimal vertex cover for�F (Ip), then
B covers all facetsF ′1, . . . , F ′t , and thereforeF ′t+1, . . . , F

′
q , as well. ThereforeB covers all

of F1, . . . , Fq , and so has a subsetB ′ of cardinality�(�) that is a minimal vertex cover for
�, and soB ′ must cover�F (Ip) as well. ThereforeB ′ = B.

We have thus shown that:

Lemma 4.3(Localization of an unmixed simplicial complex is unmixed). Let � be an un-
mixed simplicial complex with verticesx1, . . . , xn, and letI = F(�) be the facet ideal of
� in the polynomial ringR = k[x1, . . . , xn] where k is a field. Then for any prime ideal p
of R, �F (Ip) is unmixed with�(�F (Ip)) = �(�).

We examine a specific case:
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Example 4.4. Let � be the simplicial complex below withI = (xyu, xyz, xzv) its facet
ideal in the polynomial ringR = k[x, y, z, u, v].

u x v

zy

Let p = (u, x, z) be a prime ideal ofR. ThenIp = (xu, xz, xz) = (xu, xz). The tree
�F (Ip), shown below, has minimal vertex covers{x} and{u, z}, which are the generating
sets for the minimal primes ofIp.

u
x

z

If q = (y, z, v) thenIq = (y, yz, zv) = (y, zv) which corresponds to the forest�F (Iq)

drawn below with minimal vertex covers{y, z} and{y, v}.
zy

v

Example4.4above also demonstrates the following lemma.

Lemma 4.5(Localization of a tree is a forest). Let � be a tree with verticesx1, . . . , xn,
and letI = F(�) be the facet ideal of� in the polynomial ringR = k[x1, . . . , xn] where
k is a field. Then for any prime ideal p of R, �F (Ip) is a forest.

Proof. The first step is to show that it is enough to prove this for prime ideals ofR
generated by a subset of{x1, . . . , xn}. To see this, assume thatp is a prime ideal ofR and
thatp′ is another prime ofR generated by allxi ∈ {x1, . . . , xn} such thatxi ∈ p (recall
that the minimal primes ofI are generated by subsets of{x1, . . . , xn}). So p′ ⊆ p. If
I = (M1, . . . ,Mq), then

Ip′ = (M1
′, . . . ,Mq

′),

where for eachi, Mi
′ is the image ofMi in Ip′ . In other words,Mi

′ is obtained by dividing
Mi by the product of all thexj such thatxj |Mi andxj /∈ p′. But xj /∈ p′ implies that
xj /∈ p, and so it follows thatMi

′ ∈ Ip. ThereforeIp′ ⊆ Ip. On the other hand since
p′ ⊆ p, Ip ⊆ Ip′ , which implies thatIp′ = Ip (the equality and inclusions of the ideals
here mean equality and inclusion of their generating sets).
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We now prove the theorem forp = (xi1, . . . , xir ). Following the setup in Discussion4.2,
we let

� = 〈F1, . . . , Fq〉,
Ip = (M ′1, . . . ,M ′t ),

�′ = �F (Ip) = 〈F ′1, . . . , F ′t 〉
for somet�q.

To show that�′ is a forest, we need to show that every non-empty subcollection of�′
has a leaf.

Let

�′1 = 〈F ′j1
, . . . , F ′js 〉

be a subcollection of�′ whereF ′j1
, . . . , F ′js are distinct facets. Ifs = 1,F ′j1

is obviously a
leaf and so we are done; so supposes > 1. Consider the corresponding subcollection

�1 = 〈Fj1, . . . , Fjs 〉
of �, which has a leaf, sayFj1. So there existsG ∈ �1\〈Fj1〉, such that

Fj1 ∩ F ⊆ Fj1 ∩G
for every facetF ∈ 〈Fj2, . . . , Fjs 〉. Now since each of theF ′ju is a non-empty facet of�′1
andG′ �= F ′j1

, the same statement holds in�′1; so

F ′j1
∩ F ′ ⊆ F ′j1

∩G′

for every facetF ′ ∈ �′1\〈F ′j1
〉. This implies thatF ′j1

is a leaf for�′1. �

5. Simplicial complexes as higher-dimensional graphs

In this section we study simplicial complexes as graphs with higher dimension, drawing
results that will help us later in inductive arguments on unmixed trees.

Lemma 5.1. If � is a simplicial complex that has a leafF with joint G, then�(�\〈G〉) =
�(�).

Proof. Suppose�(�) = r. Let �′ = �\〈G〉 and letA be a vertex cover of minimal
cardinality for�′, which implies that|A|�r, as any vertex cover of� has a subset that is
a vertex cover of�′. SinceF is a facet of�′, there exists a vertexx ∈ A that belongs to
F . If x is a free vertex ofF , we may replace it by a non-free vertex ofF to get a vertex
coverA′′ of �′, with a subsetA′ that is a minimal vertex cover of�′, and so|A′|� |A|. But
nowA′ is a minimal vertex cover for all of�, and so|A′| = |A| = r which implies that
�(�′) = �(�) = r. �
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Corollary 5.2. If the simplicial complex� is a tree andG ∈ � is a joint, then�(�\〈G〉) =
�(�).

This means that in a tree with more than one facet, it is always possible to remove a facet
without reducing the vertex covering number. Moreover, we show in Proposition6.6that if
� is an unmixed tree with a jointG, then�\〈G〉 is also unmixed. As a result, one can use
induction on the number of facets of an unmixed tree. Note that all these arguments remain
valid for a forest.

We are now ready to extend König’s theorem from graph theory.

Theorem 5.3(A generalization of König’s theorem). If � is a simplicial complex that is a
tree(forest) and�(�) = r, then� hasr independent facets, and therefore�(�) = �(�) = r.

Proof. We use induction on the number of facetsq of �. If q = 1, then there is nothing
to prove since�(�) = �(�) = 1.

Suppose that the theorem holds for forests with less thanq facets and let� be a forest
with q facets. If every connected component of� has only one facet, our claim follows
immediately. Otherwise, by Corollary5.2 one can remove a joint of� to get a forest�′
with �(�′) = r, and so by induction hypothesis�′ hasr independent facets, which are also
independent facets of�; so�(�)��(�). On the other hand, it is clear that�(�)��(�),
and so the assertion follows.�

6. The structure of an unmixed tree

This section is the combinatorial core of the paper. Here, we give a precise description
of the structure of an unmixed tree. It turns out that a tree is unmixed if and only if it is
“grafted” (see Definition7.1). The notion of grafting is what eventually builds a bridge
between unmixed and Cohen–Macaulay trees.

BelowV (�) stands for the vertex set of�.

Lemma 6.1. Let� be an unmixed simplicial complex. Suppose that�(�) = �(�) = r, and
{F1, . . . , Fr} is a maximal independent set of facets of�. Then every vertex of� belongs
to one of theFi . In other words, the vertex set of� is the disjoint union of the vertex sets of
theFi :

V (�) = V (F1) ∪ . . . ∪ V (Fr).

Proof. Let x be an vertex of� that does not belong to any of theFi . Then one can find a
minimal vertex coverA of � containingx (this is always possible). But thenA must contain
one vertex of each of theFi as well, which implies that|A|�r + 1. Since� is unmixed,
this is not possible. �

Remark 6.2. Lemma6.1 does not hold in general for any unmixed simplicial complex.
Take, for example, the case of a complete graphG over 5 vertices labeledx, y, z, u, v (every
pair of vertices ofG are connected by an edge). This graph is unmixed with�(G) = 4 and



312 S. Faridi / Journal of Combinatorial Theory, Series A 109 (2005) 299 – 329

�(G) = 2. However,{xy, uv} is a maximal independent set of facets and the fifth vertex
z of G is missing from the vertex set of the graph〈xy, uv〉, which contradicts the claim of
Lemma6.1.

Lemma6.1along with Theorem5.3provides us with the following property for unmixed
trees.

Corollary 6.3. If � is an unmixed tree with�(�) = r, and {F1, . . . , Fr} is a maximal
independent set of facets of�, thenV (�) = V (F1) ∪ · · · ∪ V (Fr).

Corollary 6.4. If � is an unmixed tree, then any maximal independent set of facets of
cardinality �(�) of � contains all the leaves. In particular, the leaves of an unmixed tree
are independent.

Proof. Every leaf has a free vertex, and so it follows from above that a independent set of
facets of cardinality�(�) must contain all the leaves. The claim then follows.�

Corollary 6.5. If � is an unmixed tree, then a maximal independent set of facets of cardi-
nality �(�) of � cannot contain a joint. In particular, a joint of an unmixed tree cannot be
a leaf.

Proof. If G is a joint, it has to intersect a leafF by definition, and asF is in every maximal
independent set of facets of cardinality�(�), G cannot be in any. �

But even more is true. For an unmixed tree�, there is only one maximal independent set
of facets with�(�) elements, and that is the set consisting of all the leaves. We prove this
in Theorem6.8.

The proposition below allows us to use induction on the number of facets of an unmixed
tree.

Proposition 6.6. Let � be an unmixed tree with a leafF , and letG be a joint ofF . Then
�′ = �\〈G〉 is also unmixed.

Proof. We use induction on the number of vertices of�. Let

� = 〈F1, . . . , Fq〉
and

V = {x1, . . . , xn}
be the vertex set for�.

The casen = 1 is clear.
Suppose that�(�) = r andA is a minimal vertex cover for�′. By Corollary5.2�(�′) = r

as well. IfA contains any vertex ofG, then it is also a minimal vertex cover for� and hence
of cardinalityr. So suppose that

A ∩G = ∅ and|A| > r.
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Claim. There is a vertexx ∈ V \(A ∪G).

Proof of claim. If not, then

V = A ∪G. (2)

We show that this is not possible.
Notice that for anyy ∈ A there is a facetH ∈ �′ such thatH ∩ A = {y} (if no suchH

existed, thenA\{y} would also be a vertex cover).
From (2) it follows that

H = (G ∩H) ∪ {y}. (3)

On the other hand, using Theorem5.3 we can assume{F1, . . . , Fr} is a maximal inde-
pendent set of facets in�. By Corollary6.5

G /∈ {F1, . . . , Fr}.
As |A| > r, one of theFi , sayFr , has to contain more than one element ofA, so suppose

A ∩ Fr = {y1, . . . , ys},
wheres > 1 andy1, . . . , ys are distinct elements ofA. It follows from (2) that

Fr = (Fr ∩G) ∪ {y1, . . . , ys}. (4)

From the discussion preceding (3) above, one can pickH1, . . . , Hs to be facets of�′
such that

Hi = (G ∩Hi) ∪ {yi} (5)

for i = 1, . . . , s, and consider the tree

〈G,Fr,H1, . . . , Hs〉
which by Lemma4.1 is supposed to have two leaves. But based on the descriptions of
Fr,H1, . . . , Hs in (4) and (5), only one facet of this tree, namelyG, could possibly have a
free vertex, which is a contradiction. This proves the claim.�

We now proceed to showing that|A| > r is not possible.
Let x ∈ V \(A ∪ G). We localize at the prime idealp generated byV \{x}, and use the

induction hypothesis.
Let

I = F(�) andI ′ = F(�′)

and let

�p = �F (Ip) and�′p = �F (I ′p).
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From Discussion4.2we know that, without loss of generality, for somet�q

�p = 〈F̃1, . . . , F̃t 〉,
whereF̃i = Fi\{x}, and each ofF̃t+1, . . . , F̃q contains at least one of̃F1, . . . , F̃t .

We also know by Lemma4.5that�p is a forest whose vertex set is a proper subset ofV.
By Lemma4.3�p is unmixed with�(�p) = r.
We now focus on�′p. Besides possiblỹG, all other facets of�p and�′p are the same.

We show why this is true.
Let F̃i ∈ �′p. Then clearly

F̃j �⊆ F̃i for all Fj ∈ �′, j �= i.

On the other hand, as̃G = G andG �⊆ Fi , we have

G̃ �⊆ F̃i

and soF̃i ∈ �p.

Conversely, ifF̃i ∈ �p, then

F̃j �⊆ F̃i for all Fj ∈ �, j �= i,

which implies the same for allFj ∈ �′, and thereforẽFi ∈ �′p.
So there are two possible scenarios:
Case1: If G̃ /∈ �p, then

�p = �′p,

which implies thatA is also a minimal vertex cover of�p, which is unmixed, and hence
|A| = r; a contradiction.

Case2: If G̃ ∈ �p then

F̃ ∈ �p.

If not, then for some facetH of �, we haveH̃ ⊆ F̃ , soH ∩ F �= ∅ and therefore, sinceG
is a joint of the leafF,

H ∩ F ⊆ G ∩ F,
which immediately results in

H̃ ⊆ G̃

which is not possible.
In fact, F̃ remains a leaf in�p, since ifH̃ is a facet of�p such thatH̃ ∩ F̃ �= ∅, then

∅ �= H ∩ F ⊆ G ∩ F �⇒ H̃ ∩ F̃ ⊆ G̃ ∩ F̃
and soG̃ is a joint of�p.
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Now by the induction hypothesis,

�′p = �p\〈G̃〉
is an unmixed forest. This again implies that|A| = r; a contradiction. �

Example 6.7.Although not obvious at a first glance, Proposition6.6does not necessarily
hold if G is not a tree.The following example of an unmixed graphGwith a leaf demonstrates
this point.

y

G:

v

z

x

u

G’:

u z

x

v

y

w w

The graphG above was taken from the table of unmixed graphs in[Vi2] . The minimal
vertex covers ofG, all of cardinality 3, are{w, z, y}, {v, x, u}, and{v, z, y}. But once one
removes the joint{v, z},G′ has minimal vertex covers{w, y, z} and{w, y, x, u} of different
cardinalities, and is therefore not unmixed.

Theorem 6.8(Structure theorem for unmixed trees). Suppose that� is an unmixed tree
with more than one facet such that�(�) = r. Then� can be written as

� = 〈F1, . . . , Fr 〉 ∪ 〈G1, . . . ,Gs〉
with the following properties:

(i) F1, . . . , Fr are all the leaves of�;
(ii) {G1, . . . ,Gs} ∩ {F1, . . . , Fr} = ∅;

(iii) For i �= j , Fi ∩ Fj = ∅;
(iv) If a facetH ∈ � is not a leaf, then it does not contain a free vertex.

Proof. If we prove (i), then parts (ii)–(iv) will follow from (i), Corollaries6.4and6.3.
We prove part (i) by induction on the number of facetsq of �. If q > 1, thenq�3 (if �

is a tree of two facets, both facets must be leaves by Lemma4.1, and since� is connected,
we can get minimal vertex covers of cardinalities one and two, which means that� is not
unmixed).

So the base case for induction is whenq = 3. In this case, letF1 andF2 be the two
disjoint leaves of�, and letG1 be the third facet. Since� is connected and unmixed,G1
cannot be a leaf (because the leaves are pairwise disjoint). SoG1 is a joint for bothF1 and
F2 and this settles the caseq = 3.

For the general case, suppose thatG is a joint of�. By Corollary6.5, G is not a leaf. By
Corollary5.2and Proposition6.6, if we removeG, the forest�′ = �\〈G〉 is unmixed and



316 S. Faridi / Journal of Combinatorial Theory, Series A 109 (2005) 299 – 329

�(�′) = r. By the induction hypothesis,

�′ = 〈F1, . . . , Fr 〉 ∪ 〈G1, . . . ,Gs〉, (6)

where conditions (i)–(iv) are satisfied. It is easy to see from condition (iv) that ifF is a leaf
of �, then it will still be a leaf of�′ (because it has a free vertex).

Our goal is to show that the converse is true, that is, to show thatF1, . . . , Fr are all the
leaves of�.

We have the following presentation for�:

� = 〈F1, . . . , Fr 〉 ∪ 〈G1, . . . ,Gs〉 ∪ 〈G〉. (7)

There are two cases to consider.
Case1: G is the only joint of�.
Suppose, without loss of generality, that for somee, F1, . . . , Fe−1 are leaves of� and

Fe, . . . , Fr are not leaves of�. RemoveF1, . . . , Fe−1 from � to obtain the forest

�′′ = 〈Fe, . . . , Fr 〉 ∪ 〈G1, . . . ,Gs〉 ∪ 〈G〉.
By Lemma4.1, �′′ has at least two leaves. Neither one ofG1, . . . ,Gs could be a leaf,

because neither one of them has a free vertex. To see this, note that by the induction
hypothesis on�′ and part (iv) of the theorem,G1, . . . ,Gs do not have free vertices in�′,
and hence they cannot have free vertices in�. As facets of�′′, they still do not have free
vertices, because asG is the only joint of�,

Gi ∩ Fj ⊆ G ∩ Fj ⊆ G for 1� i�s and 1�j�e − 1.

SinceG is a facet of�′′ the removal ofF1, . . . , Fe−1 does not free any vertices of
G1, . . . ,Gs .

This implies that at least one ofFe, . . . , Fr is a leaf of�′′. Suppose thatFe is a leaf. Then
there exists a facetG′ ∈ �′′ such that

H ∩ Fe ⊆ G′ ∩ Fe for all H ∈ �′′\〈Fe〉.
SinceFi ∩ Fe = ∅ for i = 1, . . . e − 1, it follows that

H ∩ Fe ⊆ G′ ∩ Fe for all H ∈ �\〈Fe〉
and soFe is a leaf of�, which is a contradiction.

Case2: � has another jointG′ distinct fromG.
Consider the presentation of� as in (7). As {F1, . . . , Fr} is a maximal independent set

of facets in�, it cannot containG′ (Corollary6.5). Therefore

G′ ∈ {G1, . . . ,Gs}.
We show that, say,F1 is a leaf of�.

Consider the two unmixed forests

�′ = �\〈G〉 and�′′ = �\〈G′〉.
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We already know from before thatF1 is a leaf of�′. From the fact that{F1, . . . , Fr} is a
maximal independent set of facets in�′′ and Corollary6.4and the induction hypothesis, it
follows thatF1 is also a leaf of�′′.

So, by the definition of a leaf, there is a facet, sayG1, in �′, such that

H ∩ F1 ⊆ G1 ∩ F1 for all H �= G,F1 (8)

and a facetG2 ∈ �′′ such that

H ∩ F1 ⊆ G2 ∩ F1 for all H �= G′, F1. (9)

The possible scenarios are the following.

(a) G1 �= G′ orG2 �= G.
SupposeG1 �= G′. In this caseG1 ∈ �′′, and so because of (9)

G1 ∩ F1 ⊆ G2 ∩ F1

which with (8) and (9) implies that

H ∩ F1 ⊆ G2 ∩ F1 for all H �= F1

henceF1 is a leaf of�. The caseG2 �= G is identical.
(b) G1 = G′ andG2 = G.

In this case, Statements (8) and (9), respectively, translate into

{
H ∩ F1 ⊆ G′ ∩ F1 for all H �= G,F1,

H ∩ F1 ⊆ G ∩ F1 for all H �= G′, F1.
(10)

If F1 is not a leaf of�, it follows from (10) that


G ∩ F1 �⊆ G′ ∩ F1,

G′ ∩ F1 �⊆ G ∩ F1
H ∩ F1 ⊆ (G ∩G′) ∩ F1 for all H �= G,G′, F1.

(11)

By (11) there exist

x ∈ (G ∩ F1)\G′ and y ∈ (G′ ∩ F1)\G. (12)

Claim. There is a minimal vertex cover for�\〈G,G′, F1〉 that avoids all the vertices in G,
G′ andF1.

Proof of Claim.We first show that there is no facet of�\〈G,G′, F1〉 that has all its vertices
in G ∪G′. Suppose thatH is such a facet:

H = (H ∩G) ∪ (H ∩G′) (13)
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and consider the tree

�1 = 〈G,G′, F1, H 〉.

By Lemma4.1, �1 must have two leaves. Note thatH cannot be a leaf, since because of
(13) it has no free vertices. IfF1 is a leaf, then it cannot haveG orG′ as its joint, since that
violates the first two conditions in (11), and soH must be its joint. But then it follows that

G ∩ F1 ⊆ H ∩ F1.

This implies thatx ∈ H (wherex is defined in (12)), which along with the third part of (11),
results inx ∈ G′, which is a contradiction.

SoG andG′ are the two leaves of�1. ConsiderG first. If G′ is a joint forG, it follows
that

F1 ∩G ⊆ G′ ∩G ⊆ G′

which contradicts (11).
If H is a joint ofG, then

F1 ∩G ⊆ H ∩G

which implies thatx ∈ H , but this again meansx ∈ G′ (because of (11)), which is a
contradiction. SoF1 is the only possible joint forG.

With an identical argument forG′, it follows thatF1 is a joint for bothG andG′ in �1,
and therefore

H ∩G ⊆ F1 ∩G andH ∩G′ ⊆ F1 ∩G′

which along with (13) implies that

H ⊆ F1

which is impossible sinceH andF1 are both facets of�.
So we have shown that every facet of� other thanG, G′ andF1, has at least one vertex

outsideG andG′ (and therefore by the third condition in (11), outsideF1).
For each facetH of �\〈G,G′, F1〉, pick a vertexz ∈ H that avoids all three facetsG, G′

andF1. The set of these vertices is a vertex cover for�\〈G,G′, F1〉, and so it has a subset
that is a minimal vertex cover. This proves the claim.�

Now letA be a minimal vertex cover for�\〈G,G′, F1〉 that avoids all the vertices inG,
G′ andF1. Since�\〈G,G′, F1〉 hasr − 1 independent facets,|A|�r − 1. NowA∪ {x, y}
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is a minimal vertex cover for� with more thanr vertices, which contradicts the fact that�
is unmixed with vertex covering number equal tor (Note thatx andy do not belong to any
facet of�\〈G,G′, F1〉, as this would contradict the third condition in (11)).

So both cases 1 and 2 lead to contradictions, therefore all ofF1, . . . , Fr must be leaves
of �, which proves the theorem.�

Example 6.9. The simplicial complex� shown below is an unmixed tree, satisfying prop-
erties (i)–(iv) of Theorem6.8.

F1

G1
G2

F2

It is important to notice that Theorem6.8 does not suggest that every facet in an un-
mixed tree is either a leaf or a joint (See Example6.10 below). On the other hand, two
different leaves in an unmixed tree may share a joint, as is the case with the unmixed graph
〈xy, yz, zu〉. For these reasons the two numbersr ands in the statement of Theorem6.8that
count the number of leaves and non-leaves, respectively, do not seem to have any particular
relationship to one another.

Example 6.10.The following simplicial complex, which is the facet complex of
the ideal

(xu, uvew, zvew, efw, efg, fgy)

is an unmixed tree with a facet{e, f,w} that is neither a leaf nor a joint. In fact, the two
leaves{x, u} and{z, v, e, w} share a joint{u, v, e, w}.

x w

u

z v

e

g

y

f

Above, for simplicity, ann-dimensional facet (simplex) is drawn as a shaded polygon
with n+ 1 vertices. The picture in 3D is as follows:
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f
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7. Grafting simplicial complexes

All that we proved in the previous section about unmixed trees can be put into one
definition—namely that of a grafted tree. In fact, the method of grafting works as an effective
way to build an unmixed simplicial complex from any given simplicial complex by adding
new leaves (Theorem7.6). It turns out that a grafted simplicial complex is Cohen–Macaulay
(Theorem8.2).

Definition 7.1 (Grafting). A simplicial complex� is agrafting of the simplicial complex
�′ = 〈G1, . . . ,Gs〉 with the simplicesF1, . . . , Fr (or we say that� is grafted) if

� = 〈F1, . . . , Fr 〉 ∪ 〈G1, . . . ,Gs〉
with the following properties:

(i) V (�′) ⊆ V (F1) ∪ . . . ∪ V (Fr);
(ii) F1, . . . , Fr are all the leaves of�;

(iii) {G1, . . . ,Gs} ∩ {F1, . . . , Fr} = ∅;
(iv) For i �= j , Fi ∩ Fj = ∅;
(v) If Gi is a joint of�, then�\〈Gi〉 is also grafted.

Note that a simplicial complex that consists of only one facet or several pairwise disjoint
facets is indeed grafted, as it could be considered as a grafting of the empty simplicial
complex. It is easy to check that conditions (i)–(v) above are satisfied in this case.

It is also clear that the union of two or more grafted simplicial complexes is itself grafted.

Remark 7.2. Condition (v) above implies that ifF is a leaf of a grafted�, then all the
facetsH that intersectF have embedded intersections; in other words ifH ∩F andH ′ ∩F
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are both non-empty, then

H ∩ F ⊆ H ′ ∩ F or H ′ ∩ F ⊆ H ∩ F.
This implies that there is a chain of intersections

H1 ∩ F ⊇ · · · ⊇ Ht ∩ F,
whereH1, . . . , Ht are all the facets of� that intersectF.

Remark 7.3. Condition (v) in Definition7.1can be replaced by “�\〈Gi〉 is grafted for all
i = 1, . . . , s”. This is because even ifGi is not a joint of�, �\〈Gi〉 satisfies properties (i),
(iii) and (iv), and it satisfies (ii) and (v) because of Remark7.2, and so�\〈Gi〉 is grafted.

Remark 7.4 (A grafting of a tree is also a tree). If �′ in Definition 7.1 is a tree, then� is
also a tree. To see this, consider any subcollection�′′ of �. If �′′ containsFi for somei,
then by Remarks7.2and7.3Fi is a leaf of�′′. If �′′ contains neither of theFi , then it is a
subcollection of the tree�′, which implies that�′′ has a leaf.

The “suspension” of a graph, as defined in[Vi1] , is also a grafting of that graph.

Example 7.5. The tree〈F1, F2,G1,G2〉 that appeared in Example6.9above is a grafting
of the tree〈G1,G2〉 with the leavesF1 andF2. In fact, there may be more than one way
to graft a given simplicial complex. For example, some possible ways of grafting〈G1,G2〉
are shown below:

∆ : G1
G2

graft
∆′ :

∆″    : ∆′′′ :

F1

G1
G2

F2

graft

F1

G1 G2

F2

F3

graft

G1

F1
F2

F3

G2

F4

Theorem 7.6(A grafted simplicial complex is unmixed). Let

� = 〈F1, . . . , Fr 〉 ∪ 〈G1, . . . ,Gs〉
be a grafting of the simplicial complex〈G1, . . . ,Gs〉 with the simplicesF1, . . . , Fr . Then
� is unmixed, and�(�) = r.

Proof. If 〈G1, . . . ,Gs〉 is the empty simplicial complex, the claim is immediate, so we
assume that it is non-empty.

We argue by induction on the number of facetsq of �. The first case to consider is
q = 3. In this case,� must have at least two leaves, as if there were only one leafF1, i.e.
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if � = 〈F1〉 ∪ 〈G1,G2〉, then by Condition (i) of Definition7.1we would haveG1 ⊆ F1
andG2 ⊆ F1, which is impossible. So� = 〈F1, F2〉 ∪ 〈G1〉, whereG1 ⊆ F1 ∪ F2 and
F1 ∩ F2 = ∅. It is now easy to see that� is unmixed with�(�) = 2.

Suppose� hasq > 3 facets, and letG1 be a joint of the leafF1. By Part (v) of Definition
7.1�′ = �\〈G1〉 is also grafted, and therefore by the induction hypothesis unmixed with
�(�′) = r.

Let A be a minimal vertex cover of�. We already know that|A|�r asF1, . . . , Fr arer
independent facets of�. Now suppose that|A| > r . SinceA is also a vertex cover for�′,
it has a subsetA′ that is a minimal vertex cover of�′ with |A′| = r. SinceA′ is a proper
subset ofA, it is not a vertex cover for�, and thereforeA′ cannot contain a vertex ofG1.
SoA′ contains a free vertexx of F1 (all non-free vertices ofF1 are shared withG1). Now
A must contain a vertexy of G1; sayy ∈ G1 ∩ F2 (y /∈ F1, since in that casex would be
redundant). So

A = A′ ∪ {y}.
On the other handA′ must also contain a vertex ofF2, sayz. SoF2 contributes two vertices
y andz to A; note that neither one ofy or z could be a free vertex, as in that case the free
one would be redundant.

Now suppose thatG2 is a joint ofF2. RemoveG2 from � to get

�′′ = �\〈G2〉.
SoA has a subsetA′′, |A′′| = r, that is a minimal vertex cover for�′′. But asA already has
exactly one vertex in each ofF1, F3, . . . , Fr , the only way to getA′′ from A is to remove
one ofy or z, this means that:

A′′ = A\{y} or A′′ = A\{z}.
In either caseA′′ contains a vertex ofG2, which implies thatA′′ is a minimal vertex cover
for �; a contradiction. �

Example7.5 demonstrates Theorem7.6: � = 〈G1,G2〉 is a non-unmixed tree, which
gets grafted with some leaves to make the unmixed trees�′, �′′ and�′′′.

One could graft any simplicial complex, even a badly non-unmixed non-tree.

Example 7.7. Let �′ be the non-unmixed non-tree in Example3.3. We could graft�′ with
three new leaves

{x, y, v}, {u,w}, {z, e}.
The resulting picture below is unmixed, and moreover, as we prove later, Cohen–Macaulay.

x

z

yv

e

u

w
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In the case of a tree Theorems6.8and7.6put together with Corollary6.3produce a much
stronger statement:

Corollary 7.8 (A tree is unmixed if and only if grafted). Suppose the simplicial complex�
is a tree. Then� is unmixed if and only if� is grafted.

Grafted simplicial complexes behave well under localization; in other words, the local-
ization of a grafted simplicial complex is also grafted. In the case of trees this follows
directly from Corollary7.8, Lemmas4.3and4.5. But the statement holds more generally.

Proposition 7.9(Localization of a grafted simplicial complex is grafted). Let I = F(�)
where� is a grafted simplicial complex with vertices labeledx1, . . . , xn. Suppose that k is
a field and p is a prime ideal of the polynomial ringk[x1, . . . , xn]. Then�F (Ip) is a grafted
simplicial complex.

Proof. With notation as in Definition7.1, let

� = 〈F1, . . . , Fr 〉 ∪ 〈G1, . . . ,Gs〉.
If � has only one facet, the statement of the theorem follows immediately, so assume that

� has two or more facets.
As in the proof of Lemma4.5, it is enough to assume thatp is generated by a subset of
{x1, . . . , xn}, so

p = (xi1, . . . , xih).

Following Discussion4.2, let

�p = �F (Ip) = 〈F ′1, . . . , F ′t 〉 ∪ 〈G′1, . . . ,G′u〉,
where fori = 1, . . . , r andj = 1, . . . , s

F ′i = Fi ∩ {xi1, . . . , xih} andG′j = Gj ∩ {xi1, . . . , xih}
andF ′t+1, . . . , F

′
r ,G

′
u+1, . . . ,G

′
s each contain at least one of

F ′1, . . . , F ′t , G′1, . . . ,G′u. (14)

We now rename the facets of�p as follows. Fori = 1, . . . , t , let

Hi = F ′i .

For eachi = t + 1, . . . , r, F ′i contains one of the facets appearing in (14). But as by
definitionFi ∩Fj = ∅ for all j �= i, there must be somej�u for whichG′j ⊆ F ′i . For this
particularj, set

Hi = G′j .

This choice ofj is well-defined: if there were somef �u distinct fromj such thatG′f ⊆
F ′i , then it would follow from Remark7.2 that eitherG′j ⊆ G′f or G′f ⊆ G′j , which
contradicts the fact that bothG′j andG′f are facets of�p.
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We now represent�p as

�p = 〈H1, . . . , Hr 〉 ∪ 〈E1, . . . , Ev〉,
whereE1, . . . , Ev represent all the other facets of�p that were not labeled by someHi .

Our goal is to show that�p is a grafting of the simplicial complex〈E1, . . . , Ev〉with the
simplicesH1, . . . , Hr .

It is clear by our construction that the facetsH1, . . . , Hr are pairwise disjoint. To see this,
notice that for each pair of distinct numbersi1, i2�r, there is a pair of distinct numbers
j1, j2�r such that

Hi1 ⊆ F ′j1
⊆ Fj1 andHi2 ⊆ F ′j2

⊆ Fj2

and asFj1 ∩ Fj2 = ∅,
Hi1 ∩Hi2 = ∅.

So Condition (iv) of Definition7.1 is satisfied.
On the other hand, by Theorem7.6� is unmixed, so by Lemma4.3�p is unmixed with

�(�p) = �(�) = r. We now apply Lemma6.1to �p to deduce that

V (�p) = V (H1) ∪ · · · ∪ V (Hr),

which implies Condition (i) in Definition7.1. This also implies thatE1, . . . , Ev cannot have
free vertices, and hence cannot be leaves of�p.

Condition (iii) is satisfied by the construction of�p.
We need to show thatH1, . . . , Hr are all leaves of�p. If �p = 〈H1, . . . , Hr 〉 then

�p is grafted by definition. So suppose that�p has a connected component�′ with two
or more facets. As�′ is connected, it must contain some of theEi , and asV (�p) =
V (H1) ∪ · · · ∪ V (Hr), �′ must also contain some of theHj . So we can without loss of
generality assume that

�′ = 〈H1, . . . , He〉 ∪ 〈E1, . . . , Ef 〉
for some 1�e�r and 1�f �v.

We now show that, for example,H1 is a leaf for�′. There are two cases to consider:
Case1:H1 = F ′i for somei such that 1� i� t .
Since�′ is connected, it has some facets that intersectHi ; suppose thatEj1, . . . , Ejl are

all the facets of�′\〈H1〉 such that

H1 ∩ Ejz �= ∅
for z = 1, . . . , l.

For eachz = 1, . . . , l suppose that

Ejz = G′mz
.

The above paragraph translates into

F ′i ∩G′mz
�= ∅
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and hence

Fi ∩Gmz �= ∅
for z = 1, . . . , l.

From Remark7.2it follows that there is some total order of inclusion on the non-empty
setsFi ∩Gmz ; we assume that

Fi ∩Gm1 ⊇ Fi ∩Gm2 ⊇ · · · ⊇ Fi ∩Gml
,

which after intersecting each set with{xi1, . . . , xih} turns into

F ′i ∩G′m1
⊇ F ′i ∩G′m2

⊇ · · · ⊇ F ′i ∩G′ml
,

which is equivalent to

H1 ∩ Ej1 ⊇ H1 ∩ Ej2 ⊇ · · · ⊇ H1 ∩ Ejl .

It follows that H1 is a leaf of�′, and in addition, Condition (v) of Definition7.1 is
satisfied.

Case2:H1 = G′j for somej such that 1�j�u.
In this case for somei, t < i�r,

H1 = G′j ⊆ F ′i .

Exactly as above, letEj1, . . . , Ejl be all the facets of�′\〈H1〉 such thatH1 ∩ Ejz �= ∅,
and letEjz = G′mz

for z = 1, . . . , l.
As all the setsFi ∩Gmz are non-empty, we follow the exact argument as above to obtain

the chain

F ′i ∩G′m1
⊇ F ′i ∩G′m2

⊇ · · · ⊇ F ′i ∩G′ml
.

AsG′j ⊆ F ′i , we can intersect all these sets withG′j to obtain

G′j ∩G′m1
⊇ G′j ∩G′m2

⊇ · · · ⊇ G′j ∩G′ml
,

which is equivalent to

H1 ∩ Ej1 ⊇ H1 ∩ Ej2 ⊇ · · · ⊇ H1 ∩ Ejl .

It follows thatH1 is a leaf of�′, and also Condition (v) of Definition7.1is satisfied. �

8. Grafted simplicial complexes are Cohen–Macaulay

We are now ready to show that the facet ideal of a grafted simplicial complex has a
Cohen–Macaulay quotient. Besides revealing a wealth of square-free monomial ideals with
Cohen–Macaulay quotients, this result implies that all unmixed trees are Cohen–Macaulay.
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Let � be a grafted simplicial complex over a vertex setV = {x1, . . . , xn}. By Definition
7.1, � will have the form

� = 〈F1, . . . , Fr 〉 ∪ 〈G1, . . . ,Gs〉,
where�(�) = r andF1, . . . , Fr are the leaves of�.

Let

R(�) = k[x1, . . . , xn]/F(�),

wherek is a field and let

m = (x1, . . . , xn)

be the irrelevant maximal ideal.
From Discussion2.13we know that

dim R(�) = n− r.

In order to show thatR(�) is Cohen–Macaulay, it is enough to show that there is a
homogeneous regular sequence inm of lengthn− r.

It is interesting to observe how the previous sentence follows also from Proposition7.9:
if m is any other maximal ideal ofR(�), from the proof of Lemma4.5and Proposition7.9
we see that ifp = (x1, . . . , xe) is the ideal generated by all ofxi that belong tom, then
Im = Ip is the facet ideal of a grafted simplicial complex over the vertex set{x1, . . . , xe}.
So one can writem = p + q whereq is a prime ideal ofk[xe+1, . . . , xn]. It follows that

R(�)m = k[x1, . . . , xe]p/Ip ⊗k k[xe+1, . . . , xn]q .
As k[xe+1, . . . , xn]q is clearly Cohen–Macaulay, by Theorem 5.5.5 of[V] , it is enough

to show thatk[x1, . . . , xe]p/Ip is Cohen–Macaulay in order to conclude thatR(�)m is
Cohen–Macaulay. But this is again the case of localizing at the irrelevant ideal.

Now suppose that for eachi�r,

Fi = yix
i
1 . . . x

i
ui
,

whereyi is a free vertex of the leafFi , andyi, xi1, . . . , x
i
ui
∈ V . We wish to show that

y1− x1
1, . . . , y1− x1

u1
, . . . , yr − xr1, . . . , yr − xrur (15)

is a regular sequence inR(�). This follows from the process of “polarization” that we
describe below.

Proposition 8.1(Fröberg[Fr] ). Let R be the ringk[x1, . . . , xn]/(M1, . . . ,Mq), where
M1, . . . ,Mq are monomials in the variablesx1, . . . , xn, and k is a field. Then there is an
N�n,and a set of square-free monomialsN1, . . . , Nq in the polynomial ringk[x1, . . . , xN ],
such that

R = R′/(f1, . . . , fN−n),
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whereR′ = k[x1, . . . , xN ]/(N1, . . . , Nq) andf1, . . . , fN−n is a regular sequence of forms
of degree one inR′.

For the purpose of our argument, it is instructive to see an outline of the proof of this
proposition.

Sketch of proof.Suppose, without loss of generality, thatx1|Mi for 1� i�s, andx1 � |Mj

for s < j�q.
For i = 1, . . . , s we set

M ′i =
Mi

x1

so that we can write

I = (M1, . . . ,Mq) = (x1M
′
1, . . . , x1M

′
s ,Ms+1, . . . ,Mq).

Define

I1 = (xn+1M
′
1, . . . , xn+1M

′
s ,Ms+1, . . . ,Mq) ⊆ k[x1, . . . , xn, xn+1].

ThenR = R1/(xn+1− x1) where

R1 = k[x1, . . . , xn, xn+1]/I1.

It is then shown thatxn+1 − x1 is a non-zerodivisor inR1. If I1 is square-free, we are
done. Otherwise one applies the same procedure toI1 continually until the ideal becomes
square-free. �

What we would like to show is that Sequence (15) polarizes the ring

S = k[y1, . . . , yr ]/(yu1+1
1 , . . . , yur+1

r , E1, . . . , Es)

into the ringR(�), whereE1, . . . , Es are monomials corresponding to the facetsG1, . . . ,Gs ,
where each vertex belonging toFi has been replaced by the free vertexyi . In other words if

J = (y1− x1
1, . . . , y1− x1

u1
, . . . , yr − xr1, . . . , yr − xrur ),

we wish to show that

S = R(�)/J.

It will then follow from the proof of Proposition8.1(as detailed in[Fr] as well as in[Vi2] )
that Sequence (15) is a regular sequence inR(�).

Intuitively our claim is straightforward to see. The only problem that may arise is if after
applying Sequence (15) to S, we end up with a permutation of the vertices of�. To prevent
this from happening, we use the subtle structure of a grafted simplicial complex (Remark
7.2) that the facets intersecting a leaf do so in an embedded (and therefore ordered) manner.
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In other words, suppose for the leafFi , the facetsHi
1, . . . , H

i
ei

are all the facets of�\〈Fi〉
that intersectFi , with the ordering

Hi
1 ∩ Fi ⊆ · · · ⊆ Hi

ei
∩ Fi. (16)

So in Sequence (15), we order

yi − xi1, . . . , yi − xiui (17)

such that if for anye andf, xie ∈ Hi
f thenxie ∈ Hi

f+1.
We now use induction on the number of facets of�. If we remove a joint, sayG1 ∈

U�(F1), we obtain a grafted simplicial complex

�′ = �\〈G1〉
over the same set of verticesx1, . . . , xn, with �(�′) = �(�) (Lemma5.1). Therefore if

R(�′) = k[x1, . . . , xn]/F(�′)

then

dim R(�) = dim R(�′).

Moreover,�′ hasF1, . . . , Fr as leaves. So by the induction hypothesis, Sequence (15)
polarizes the ring

S′ = k[y1, . . . , yr ]/(yu1+1
1 , . . . , yur+1

r , E2, . . . , Es)

into R(�′), or in other words,

S′ = R(�′)/J.

The induction hypothesis has ensured that after applying Sequence (15) to S′, all facets
of �′ are restored to their original positions and labeling. Now it all reduces to showing that
during this polarization process,E1 turns intoG1.

This is clear, as for everyi, G1 ∩ Fi has its place in the ordered sequence (16), and so
if |G1 ∩ Fi | = hi , then the firsthi applications of Sequence (17) restoreG1 ∩ Fi before
moving on to facets that have larger intersections withFi . AsG1 has disjoint intersections
with F1, . . . , Fr , once Sequence (17) has been applied for alli, G1 is restored to its proper
position.

We have shown that:

Theorem 8.2(Grafted simplicial complexes are Cohen–Macaulay). Let�be a grafted sim-
plicial complex over a set of vertices labeledx1, . . . , xn, and let k be a field. ThenR(�) =
k[x1, . . . , xn]/F(�) is Cohen–Macaulay.

Theorem8.2 along with Proposition2.12and Corollary7.8 imply that for a tree being
unmixed and being Cohen–Macaulay are equivalent conditions.
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Corollary 8.3 (A tree is Cohen–Macaulay if and only if unmixed). Let � be a tree over a
set of verticesx1, . . . , xn, and let k be a field. Then the quotient ringk[x1, . . . , xn]/F(�)
is Cohen–Macaulay if and only if� is unmixed.
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