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Abstract

In this paper, we study simplicial complexes as higher-dimensional graphs in order to produce
algebraic statements about their facet ideals. We introduce a large class of square-free monomial
ideals with Cohen—Macaulay quotients, and a criterion for the Cohen—Macaulayness of facet ideals
of simplicial trees. Along the way, we generalize several concepts from graph theory to simplicial
complexes.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

From the point of view of commutative algebra, the focus of this paper is on finding square-
free monomial ideals that have Cohen—Macaulay quotientpvillj Villarreal proved a
criterion for the Cohen—Macaulayness of edge ideals of graphs that are trees. Edge ideals
are square-free monomial ideals where each generator is a product of two-distinct variables
of a polynomial ring. These ideals have been studied extensively by Villarreal, Vasconcelos
and Simis among others. [fra] we studied a generalization of this concept; hamely the
facet idealof a simplicial complex. By generalizing the definition of a “tree” to simplicial
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complexes, we extended the resultg¥V] from the class of edge ideals to all square-free
monomial ideals.

Below we investigate the structure of simplicial complexes in order to show that Vil-
larreal’s Cohen—Macaulay criterion for graph-trees extends to simplicial trees (Corollary
8.3). This is of algebraic and computational significance, as it provides an effective criterion
for Cohen—Macaulayness that works for a large class of square-free monomial ideals. We
introduce a condition on a simplicial complex that ensures the Cohen—Macaulayness of
its facet ideal, and a method to build a Cohen—Macaulay ideal from any given square-free
monomial ideal. Along the road to the algebraic goal, this study sheds light on the beautiful
combinatorial structure of simplicial complexes.

The paper is organized as follows: Secti@rd review the basic definitions and cover the
elementary properties of trees. In Sectlrwe draw comparisons between graph theory
and simplicial complex theory, and prove a generalized version of Kénig’'s theorem in
graph theory for simplicial complexes. We then go on to prove a structure theorem for
unmixed trees in Sectiof. We introduce the notion of grafted simplicial complex in
Section7, and show that for simplicial trees, being grafted and being unmixed are equivalent
conditions. The notion of grafting brings us to Sect@&nwhere we prove that grafted
simplicial complexes are Cohen—Macaulay, from which it follows that a simplicial tree is
unmixed if and only if it is Cohen—Macaulay.

2. Definitions and notation

In this section, we define the basic notions that we will use later in the paper. Some of
the proofs that appeared earlier[ira] have been omitted here; we refer the reader to the
relevant sections dfa] when that is the case.

Definition 2.1 (Simplicial complex, facet and mQreA simplicial complexA over a set of
verticesV = {vs, ..., v,}is a collection of subsets &f with the property thafv;} € A for
alli, and if F € A then all subsets df are also imA (including the empty set). An element
of A is called afaceof A, and thedimensiorof a faceF of A is defined a$F| — 1, where
| F| is the number of vertices &f. The faces of dimensions 0 and 1 are calledicesand
edgesrespectively, and din) = —1.

The maximal faces oA under inclusion are callefhcetsof A. The dimension of the
simplicial complexA is the maximal dimension of its facets; in other words

dim A =max{dim F|F € A}
We denote the simplicial complek with facetsFy, ..., F, by
A= (F1,..., Fy)

and we call{ F1, ..., F,;} thefacet sebf A.
A simplicial complex with only one facet is calledsamplex

Definition 2.2 (Subcollectioh By a subcollectionof a simplicial complexA we mean a
simplicial complex whose facet set is a subset of the facet s&t of
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Definition 2.3 (Connected simplicial complexA simplicial complexA = (Fy, ..., F,)
is connectedf for every pairi, j, 1<i < j <gq, there exists a sequence of facets

Fy,.... F

>

of A such thatF;, = F;, F;, = F; and
Fy N Fyy #0

fors=1,...,r — 1.

An equivalent definition is stated on p. 222[8H]: A as above iglisconnectedf its
vertex seV can be partitioned a8 = V1 U V,, whereV; andV, are non-empty subsets of
V, such that no facet ok has vertices in botliy; andV,. OtherwiseA is connected

Definition 2.4 (Facet ideal, non-face idepl Let A be a simplicial complex oververtices
labeledvy, ..., v,. Letkbe afieldx1, ..., x, be indeterminates, ariRlbe the polynomial
ring k[x1, ..., x,].

(a) WedefineF (A) tobethe ideal oRgenerated by all the square-free monomigls. . x;,,
where{v;,, ..., v;,} is a facet ofA. We call F(A) thefacet idealof A.

(b) We defineN'(A) to be the ideal ofR generated by all the square-free monomials
Xiy - --xi,, where{v;,, ..., v, } is not a face ofA. We call V'(A) the non-face ideal
or theStanleyReisner ideabf A.

We refer the reader {&,BH] for an extensive coverage of the theory of Stanley—Reisner
ideals.

Throughout this paper we often usg . . ., x, to denote both the vertices dfand the
variables appearing iF (A).

Definition 2.5 (Facet complex, non-face complestet/ = (M, ..., M,) be anideal ina
polynomialringk[xy, ..., x,], wherekis afieldand\, ..., M, are square-free monomials
in x1, ..., x, that form a minimal set of generators for

(&) We defined £(I) to be the simplicial complex over a set of vertiags. . ., v, with
facetsFy, ..., F,, where for each, F; = {v; | x;|M;, 1<j<n}. We callé£(I) the
facet complexf I.

(b) We defined s (1) to be the simplicial complex over a set of vertiags. . ., v,, where
{viy, ..., v, Yisaface obps(I) ifandonly ifx;, ... x;, ¢ I.We callop (1) thenon-face
complexor theStanley—Reisner complex I.

Facetideals give a one-to-one correspondence between simplicial complexes and square-
free monomial ideals.
Notice that given a square-free monomial idel a polynomial ringk[x1, .. ., x,], the
vertices ob £ (I) are those variables that divide a monomial in the generating kehaf set
may not necessarily include all elementdxof, ..., x,}. The fact that some extra variables
may appear in the polynomial ring does not affect the algebraic or combinatorial structure
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of 0 £(I). On the other hand, iA is a simplicial complex, being able to consider the facet
ideals of its subcomplexes as ideals in the same ring simplifies many of our discussions.

Example 2.6. Let A be the simplicial complex below.

y 4

X

Here N (A) = (yv, zu, uv), F(A) = (xyu, xyz, xzv) are ideals in the polynomial ring
klx,y,z,u, v].

Example 2.7.1f I = (xy, xz) C k[x, y, z], thend (1) is the 1-dimensional simplicial
complex:

X0

y z
andd (1) is the simple graph

X

Yy z

In this special caskis also called thedge ideabf the graph = (1) (this terminology is
due to Villarreal; se¢Vil]).

We now generalize some notions from graph theory to simplicial complexes.

Definition 2.8 (Minimal vertex cover, vertex covering number, unm)xdcet A be a sim-
plicial complex with vertex se¥ and facetdr, ..., F,. A vertex covefor A is a subsef
of V, with the property that for every facé} there is a vertex € A such that € F;. A
minimal vertex coveof A is a subseA of V such thatA is a vertex cover, and no proper
subset ofA is a vertex cover foA. The smallest cardinality of a vertex coverbfs called
thevertex covering numbesf A and is denoted by(A).

A simplicial complexA is unmixedif all of its minimal vertex covers have the same
cardinality.

Note that a simplicial complex may have several minimal vertex covers.
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Definition 2.9 (Independent set, independence nubeet A be a simplicial complex. A
set{Fi, ..., F,} of facets ofA is called arindependent sét F; N F; = ¥ whenever # ;.
The maximum possible cardinality of an independent set of faceAs denoted byS(A),

is called thendependence numbef A. An independent set of facets which is not a proper
subset of any other independent set is callesbaimal independent set facets.

Example 2.10. If A is the simplicial complex

y

z

then5(A) = 2. Also, A is unmixed as its minimal vertex covers, listed below, all have
cardinality equal to two:

{x,u}, {y, u}, {y, v}, {z, u}, {z, v}.

This, by the way, is an example of a “grafted” tree (see DefinitkBand7.1). We show
later in the paper that all grafted trees are unmixed.

The graph £(1) in Example2.7, however, is not unmixed. This is becays¢and{y, z}
are both minimal vertex covers fér- (1) of different cardinalities. In this casgd £ (1)) =
POx(I)) = 1. The same argument shows that the simplicial complex in Exathplis
not unmixed.

The following is an easy but very useful observation; see PropositiofiFajrior a proof.

Proposition 2.11. Let A be a simplicial complex over n vertices labeled. . ., x,,. Con-
sider the ideall = F(A) in the polynomial ringR = k[x1, ..., x,] over a field kThen
anidealp = (xj, ..., x;,) of R is a minimal prime of | if and only ifx;, ..., x; } is a
minimal vertex cover foA.

We say that a simplicial complek over a set of vertices;, .. ., x, is Cohen—Macaulay
if for a given fieldk, the quotient ring

klx1, ..., xn1/F(A)

is Cohen—Macaulay. It follows directly from Propositidr 1, or from an elementary duality
with Stanley—Reisner theory discussed in Corollary 3R], that in order forA to be
Cohen—Macaulay, it has to be unmixed.

Proposition 2.12(A Cohen—Macaulay simplicial complex is unmixeBuppose thaA is
asimplicial complex with vertex sef, . .., x,. If k[x1, ..., x,]/F(A) is Cohen—Macaulay
thenA is unmixed
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Discussion 2.13.1t is worth observing that for a square-free monomial idedhere is

a natural way to construety (/) and o (1) from each other using the structure of the
minimal primes ofl. To do this, consider the vertex Sétconsisting of all variables that
divide a monomial in the generating setloThe following correspondence holds:

F = facet ofonr(I) «— V\F = minimal vertex cover ob (7).
Also

I=r.

where the intersection is taken over all prime idgaidék[ V] that are generated by a minimal
vertex cover of £ (1) (or equivalently, primeg that are generated by\ F, whereF is a
facet ofdnr(1); see[BH, Theorem 5.1.4]

Regarding the dimension and codimensiom, afote that by Theorem 5.1.4 fgH] and
the discussion above, settiiy= k[ V] as above, we have

dim R/I =dim o, (1) + 1= |V| — vertex covering number of (/)
and

height/ = vertex covering number af =(1).
We illustrate all this through an example.

Example 2.14.For I = (xy, xz), whered =(I) andos(I) are drawn in Exampl@.7, we
have:

facets ofoar (1) minimal vertex covers o (/)

{x} {y,z}
{v,z} {x}

Note that/ = (x) N (y, z), and
dim k[x, y, zl/(xy, xz) = 2

as asserted in Discussi@nl3above.

A notion crucial to the rest of the paper is “removing a facet”. We want the removal of a
facet from a simplicial complex to correspond to dropping a generator from its facet ideal.
We record this definition.

Definition 2.15 (Facet removgl Supposé is a simplicial complex withfacets,, ..., F,
andF(A) = (M, ..., M) its facet ideal inR = k[x1, ..., x,]. The simplicial complex
obtained byremoving the facef; from A is the simplicial complex

A\(F;) = (F1, ..., Fi, ..., Fy).



S. Faridi / Journal of Combinatorial Theory, Series A 109 (2005) 299-329 305

Note thatF(A\(F;)) = (M1, ..., M;, ..., My).
Also note that the vertex set &\ (F;) is a subset of the vertex set &f

Example 2.16. Let A be the simplicial complex in Examp&10with facetsF = {x, y, z},
G ={y,z,u} andH = {u, v}. ThenA\(F) = (G, H) is a simplicial complex with vertex
set{y, z, u, v}.

3. Trees

In [Fa], we extended the notion of a “tree” from graphs to simplicial complexes. The
construction, at the time, was motivated by two factors: the restriction to graphs should
produce the classic graph-theoretical definition of a tree, and the new structure should fit
into a machinery that proves that the facet ideal of a tree satisfies Sliding Depth condition
[Fa, Theorem 1].

The resulting definition not only satisfies those two properties, but as we prove later in this
paper, it also generalizes graph-trees in the sense of Cohen—Macaulayness, which confirms
that algebraically this in fact is the optimal way to extend the definition of a tree.

Recall that a connected graph is a tree if it has no cycles; for example, a triangle is not
a tree. An equivalent definition states that a connected graph is a tree if every subgraph
has aleaf, where a leaf is a vertex that belongs to only one edge of the graph. This latter
description is the one that we adapt, with a slight change in the definition of a leaf, to the
class of simplicial complexes.

Definition 3.1 (Leaf, joint, universal s¢t Suppose thah is a simplicial complex. A facet
F of A is called deafif either F is the only facet ofA, or there exists a fac& in A\ (F),
such that

FNF CFNG

for every facetF” € A\(F).
The set of allG as above is denoted By (F) and called theiniversal sebf F in A. If
G € Up(F) andF N G # ¥, thenGis called goint of F.

Another way to describe a leaf is the following: (with assumptions as alfoisea leaf
if either F is the only facet ofA or the intersection of with the simplicial complex\\ (F)
is a face ofA\(F).

Definition 3.2 (Free vertex A vertex of a simplicial complex is free if it belongs to
exactly one facet oA.

In order to be able to quickly identify a leaf in a simplicial complex, it is important to
notice that a leaf must have a free vertex. This follows easily from Defirtitirotherwise,
a leaf F would be contained in its joints, which would contradict the fact that a leaf is a
facet.
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Example 3.3. The simplicial complexin Examp&6hastwo leavedx, y, u} and{x, z, v}.
The one below has no leaves, because every vertex is shared by at least two facets.

Example 3.4. In the simplicial complex below with facets; = {a, b, ¢}, F> = {a, ¢, d}
andFs = {b, ¢, d, e}, the only candidate for a leaf is the fadet(as it is the only facet with

a free vertex), but neither one 6§ N F3 or F> N F3 is contained in the other, so there are
no leaves.

Definition 3.5 (Tre€. Suppose thah is a connected simplicial complex. We say thas
atreeif every non-empty subcollection & (including A itself) has a leaf.

Equivalently, a connected simplicial complaxis a tree if every non-emptyonnected
subcollection ofA has a leaf.

Definition 3.6 (Fores). A simplicial complexA with the property that every connected
component ofA is a tree is called &rest In other words, a forest is a simplicial complex
with the property that every non-empty subcollection has a leaf.

The simplicial complex in Exampl2.6 above is a tree, whereas the ones in Examples
3.3and3.4are not, as they have no leaves.
Here is a slightly less straightforward example:

Example 3.7. The simplicial complex on the left is not a tree, because although all three
facets{x, y, u}, {x, v, z} and{y, z, w} are leaves, if one removes the fa¢et y, z}, the
remaining simplicial complex (on the right) has no leaf.

remove {x,y,z}
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Notice that in the case thatis a graph, Definitior3.5agrees with the definition of a tree
in graph theory, with the difference that now the term “leaf” refers to an edge, rather than
a vertex.

4. Basic properties of trees

Lemma 4.1(A tree has at least two leavesLet A be a tree of two or more facefshenA
has at least two leaves

Proof. Suppose that\ hasq facetsFy, ..., F, whereqg >2. We prove the lemma by
induction ong.

The casey = 2 follows from the definition of a leaf.

To prove the general case suppose fhais a leaf ofA andG1 € Ux(F1). Consider the
subcomplexA” = (F, ..., F,) of A. By induction hypothesid’ has two-distinct leaves;
say F» and F3 are those leaves. At least onef and F3 must be different fronG1; say
F> # G1. We show thatr, is a leaf forA.

Let G2 € Uy (F2). Given any facef; with i # 1, 2, we already know by the fact that
F> is a leaf of A’

F,NF> CGoN Fo.

We need to verify this for = 1.
SinceF, is a leaf forA and F> # Fy,

FoNFL CGiNFy.
Intersecting both sides of this inclusion wiih, we obtain
PN CGIiNFiNF,CGiNFr CGaNFy

where the last inclusion holds because # F» and F; is a leaf ofA’.

It follows that F», as well asFy, is a leaf forA. O

A promising property of trees from an algebraic point of view is that they behave well
under localization, i.e. the localization of atree is a forest. This property isin particular useful
when making inductive arguments on trees, as localization usually corresponds to reducing
the number of vertices of a simplicial complex. Before proving this, we first determine what
the localization of a simplicial complex precisely looks like.

Discussion 4.20n the localization of a simplicial complexSuppose that
A= (F1,..., F)

is a simplicial complex over the vertex sét= {x1,...,x,}. Letp be a prime ideal of
k[x1, ..., x,] generated by a subset{af, . . ., x,} that containd = F(A) (We show later

in the proof of Lemmat.5that this is the main case that we need to study). We would like
to see what the simplicial complex associated,téooks like.
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So
p = (Xig, ..., Xi,).
Now suppose
I=M,...,M,),
where eachy; is the monomial corresponding to the faéet It follows that
Iy =My, ..., M),

where each/] is obtained by dividing; by the product of all the variables In\{x;,, ...,
x;,} that appear in;. Some of the monomials in the generating sef phre redundant
after this elimination, so without loss of generality we can write:

I, =Mj,..., M), (1)

whereM; ..., M, are the redundant monomials.

We use the notatiofir (1) to indicate the simplicial complex associated to the monomial
ideal with the same generating set as the one describdy for(1), in the polynomial ring
klxig, ..., x;]. It follows that:

6]:(1,,) = (Fi, F,/),
where for each,

Fi/ =FN{xg,....,x}

andFt/H, el Fq’, each contain atleastoneBf, . .., F/. This simplicial complex is called
thelocalizationof A at the prime ideap.
Note that every minimal vertex covérof A that is contained itf;, , . . ., x;, } remains a

minimal vertex cover 0b = (1,,), as the minimal prime ovédrgenerated by the elements of
Aremains a minimal prime af,,.

Moreover, if A is unmixed therd (7)) is also unmixed. Algebraically, this is easy to
see, as the height of the minimal primes/gfremain the same. One can also see it from a
combinatorial argument: IB C {x;,, ..., x; } is a minimal vertex cover fob£(/,), then
B covers all facetd, . .., Fy, and therefore/, . ..., Fy, as well. Therefor® covers all
of F1, ..., F,, and so has a subsBt of cardinalityx(A) that is a minimal vertex cover for
A, and soB’ must covew £ (1,) as well. Therefore8” = B.

We have thus shown that:

Lemma 4.3(Localization of an unmixed simplicial complex is unmixeldet A be an un-
mixed simplicial complex with verticas, ..., x,, and letl = F(A) be the facet ideal of
A in the polynomial ringR = k[x1, ..., x,] where k is a fieldThen for any prime ideal p
of R dx(Ip) is unmixed withu(6 £(1,)) = a(A).

We examine a specific case:
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Example 4.4. Let A be the simplicial complex below with = (xyu, xyz, xzv) its facet
ideal in the polynomial ringQR = k[x, y, z, u, v].

y Z

X
Let p = (u, x, z) be a prime ideal oR. ThenI, = (xu, xz, xz) = (xu, xz). The tree

0r(I,), shown below, has minimal vertex coverg and{u, z}, which are the generating
sets for the minimal primes df,.

X

If ¢ = (y,z,v) thenl, = (y, yz, zv) = (y, zv) which corresponds to the fore®(7,)
drawn below with minimal vertex covefs, z} and{y, v}.

AN

Example4.4above also demonstrates the following lemma.

y @ z

\

Lemma 4.5(Localization of a tree is a forest Let A be a tree with verticessy, ..., x,,
and let/ = F(A) be the facet ideal oA in the polynomial ringR = k[x1, ..., x,] where
k is a field Then for any prime ideal p of R z(I,) is a forest

Proof. The first step is to show that it is enough to prove this for prime idealR of
generated by a subset pfy, . .., x,}. To see this, assume thats a prime ideal oR and
that p’ is another prime oR generated by alt; € {x1,...,x,} such thatr; € p (recall
that the minimal primes of are generated by subsets {af;, ..., x,}). Sop’ € p. If

I =(My,...,M,),then

1]7/ = (Ml/a MR Mq/)a

where for each, M;" is the image of\/; in I,/. In other words ;" is obtained by dividing
M; by the product of all ther; such thatr;|M; andx; ¢ p’. Butx; ¢ p’ implies that
x; ¢ p, and so it follows thatM;" € I,. Thereforel,, < I,. On the other hand since
p' € p, I, € I,;, which implies that/,, = I,, (the equality and inclusions of the ideals
here mean equality and inclusion of their generating sets).
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We now prove the theorem f@r= (x;,, ..., x;,). Following the setup in Discussieh2,
we let

A= (F1,..., F),
I, =(My,.... M),
AN =06xr(p) = (F{,..., F))

for somer <gq.
To show thatA” is a forest, we need to show that every non-empty subcollectiaxi of
has a leaf.

Let
Ay =(F,....,F})
be a subcollection of’ whereFj’ , F’ are distinct facets. If = 1, F; is obviously a

leaf and so we are done; so suppmse 1. Consider the corresponding subcollection
Ar=(Fj, ..., F},)

of A, which has a leaf, sa¥;,. So there exist& € A1\(F},), such that
FyNFCF, NG

for every facetr” € (Fj,, ..., Fj;). Now since each of the”, is a non-empty facet ok}
andG’ # F , the same statement holdsAR; so

/ / / /
FjlﬂF gFjlﬁG

for every facetr’ ¢ A/l\(Fj’.l). This implies thatr”; is a leaf forA]. O

5. Simplicial complexes as higher-dimensional graphs

In this section we study simplicial complexes as graphs with higher dimension, drawing
results that will help us later in inductive arguments on unmixed trees.

Lemma 5.1. If A is a simplicial complex that has a le&fwith joint G, thena(A\(G)) =
oa(A).

Proof. Supposex(A) = r. Let A’ = A\(G) and letA be a vertex cover of minimal
cardinality forA’, which implies thajA| <r, as any vertex cover af has a subset that is
a vertex cover of\’. SinceF is a facet ofA’, there exists a vertex € A that belongs to
F.If x is a free vertex ofF, we may replace it by a non-free vertex Bfto get a vertex
coverA” of A, with a subse#t’ that is a minimal vertex cover &', and sgA’| < |A|. But
now A’ is a minimal vertex cover for all oA, and so|A’| = |A| = r which implies that
o(A)y=o(A) =r. O
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Corollary 5.2. Ifthe simplicial compleX is atree ands € Ais ajoint, thena(A\(G)) =
o(A).

This means that in a tree with more than one facet, it is always possible to remove a facet
without reducing the vertex covering number. Moreover, we show in PropoSifithat if
A is an unmixed tree with a join®, thenA\ (G) is also unmixed. As a result, one can use
induction on the number of facets of an unmixed tree. Note that all these arguments remain
valid for a forest.

We are now ready to extend Konig's theorem from graph theory.

Theorem 5.3(A generalization of Kdnig's theordmlf A is a simplicial complex that is a
tree(fores) andu(A) = r,thenA hasr independent facetand therefore«(A) = f(A) =r.

Proof. We use induction on the number of facetsf A. If ¢ = 1, then there is nothing
to prove sincex(A) = f(A) = 1.

Suppose that the theorem holds for forests with less ¢hiatets and lefA be a forest
with ¢ facets. If every connected componentfdhas only one facet, our claim follows
immediately. Otherwise, by Corolla%.2 one can remove a joint of to get a fores\’
with a(A") = r, and so by induction hypothest$ hasr independent facets, which are also
independent facets df; soa(A) <S(A). On the other hand, it is clear thatA) > f(A),
and so the assertion follows[]

6. The structure of an unmixed tree

This section is the combinatorial core of the paper. Here, we give a precise description
of the structure of an unmixed tree. It turns out that a tree is unmixed if and only if it is
“grafted” (see Definition7.1). The notion of grafting is what eventually builds a bridge
between unmixed and Cohen—Macaulay trees.

Below V (A) stands for the vertex set &f.

Lemma 6.1. LetA be an unmixed simplicial comple&uppose that(A) = f(A) = r, and
{F1, ..., F,} is a maximal independent set of facets\ofThen every vertex & belongs
to one of theF;. In other words, the vertex set Afis the disjoint union of the vertex sets of
the F;:

V(A) = V(F)U...UV(F).

Proof. Letx be an vertex ofA that does not belong to any of tli&. Then one can find a
minimal vertex cover of A containingx (this is always possible). But thenmust contain
one vertex of each of thg; as well, which implies thatA| >r + 1. SinceA is unmixed,
this is not possible. [J

Remark 6.2. Lemma6.1 does not hold in general for any unmixed simplicial complex.
Take, for example, the case of a complete gr@pver 5 vertices labeled, y, z, u, v (every
pair of vertices ofG are connected by an edge). This graph is unmixed s(ith = 4 and
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p(G) = 2. However{xy, uv} is a maximal independent set of facets and the fifth vertex
z of G is missing from the vertex set of the graphy, uv), which contradicts the claim of
Lemma6.1l

Lemma6.1lalong with Theoren®.3provides us with the following property for unmixed
trees.

Corollary 6.3. If A is an unmixed tree witk(A) = r, and {Fy, ..., F,} is a maximal
independent set of facetsdfthenV (A) = V(Fp) U --- U V(F},).

Corollary 6.4. If A is an unmixed treethen any maximal independent set of facets of
cardinality «(A) of A contains all the leavesn particular, the leaves of an unmixed tree
are independent

Proof. Every leaf has a free vertex, and so it follows from above that a independent set of
facets of cardinality«(A) must contain all the leaves. The claim then follow§]

Corollary 6.5. If Ais an unmixed treghen a maximal independent set of facets of cardi-
nality «(A) of A cannot contain a jointln particular, a joint of an unmixed tree cannot be
aleaf

Proof. If Gisajoint, it hastointersect ale&fby definition, and a#' is in every maximal
independent set of facets of cardinalit§A), G cannot be in any. [

But even more is true. For an unmixed teegthere is only one maximal independent set
of facets witha(A) elements, and that is the set consisting of all the leaves. We prove this
in Theorem6.8.

The proposition below allows us to use induction on the number of facets of an unmixed
tree.

Proposition 6.6. Let A be an unmixed tree with a led, and letG be a joint of F. Then
A = A\(G) is also unmixed
Proof. We use induction on the number of verticestofLet
A= (F1,..., F,)
and
V={x1,...,x,}

be the vertex set foA.

The caser = 1 is clear.

Suppose that(A) = r andA is a minimal vertex cover fok”. By Corollary5.2ax(A") = r
as well. If A contains any vertex df, then it is also a minimal vertex cover farand hence
of cardinalityr. So suppose that

ANG=¢and|A| > r.
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Claim. There is a vertex € V\(A U G).

Proof of claim. If not, then
V=AUG. (2)

We show that this is not possible.

Notice that for anyy € A there is a facetf € A’ such thatd N A = {y} (if no suchH
existed, them\{y} would also be a vertex cover).

From ) it follows that

H = (GNH)U{y} (3)

On the other hand, using Theordn8we can assumgry, ..., F,} is a maximal inde-
pendent set of facets ih. By Corollary6.5

G ¢ {F1,..., F:}.
As|A| > r, one of theF;, sayF,, has to contain more than one elemenAp$o suppose

ANF ={y1,...,Ys}

wheres > 1 andyy, ..., ys are distinct elements &. It follows from (2) that
F=FNG)U{y1,...,ys} 4)
From the discussion preceding) (@bove, one can picky, ..., H to be facets oA’
such that
H; = (G N H;) U {yi} (5)
fori =1,...,s,and consider the tree

<G7FraHla"-7HV>

which by Lemma4.1 is supposed to have two leaves. But based on the descriptions of
F,, H1, ..., Hy in (4) and §), only one facet of this tree, nameB; could possibly have a
free vertex, which is a contradiction. This proves the clairfl

We now proceed to showing thgt| > r is not possible.

Letx € V\(A UG). We localize at the prime ide@l generated by \{x}, and use the
induction hypothesis.

Let

I =FA)andl’ = F(A)
and let

A, =06x(,) andA’, = 5x(I',).
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From Discussiod.2we know that, without loss of generality, for som€ g
Ay =(F1,..., F),

whereF; = F;\{x}, and each of;.1, ..., F, contains at least one @, ..., F,.
We also know by Lemmé.5thatA , is a forest whose vertex set is a proper subset of
By Lemma4.3 A, is unmixed witha(A,) = r.

We now focus on\’,,. Besides possiblg, all other facets of\, andA’,, are the same.
We show why this is true.
Let F; € A’p. Then clearly

Fi g Fiforall Fj e A, j#i.
On the other hand, a = G andG ¢ F;, we have
G¢ZF
and SoF; € A,. )
Conversely, ifF; € A, then
F; ¢ Fiforall FjeA, j#i,

which implies the same for alf; € A’, and therefore”; € A',,.
So there are two possible scenarios:
Casel: If G ¢ A, then

A, =N,

which implies thatA is also a minimal vertex cover &, which is unmixed, and hence
|A| = r; a contradiction.
Case2: If G € A, then

FeA,.

If not, then for some facet of A, we haveH C F, soH N F # (§ and therefore, sincé
is a joint of the leaf,

HNFCGNF,
which immediately results in
HcG
which is not possible. . o
In fact, F remains a leaf i\, since ifH is a facet ofA, such that N F # ¢, then
W+AHNFCGNF=HNFCGNF

and soG is a joint of A ,.
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Now by the induction hypothesis,
Ay =Ap\(G)
is an unmixed forest. This again implies that = r; a contradiction. [
Example 6.7. Although not obvious at a first glance, Propositf does not necessarily

hold if Gis nota tree. The following example of an unmixed gr&phith a leaf demonstrates
this point.

w

The graphG above was taken from the table of unmixed graph@/ig] . The minimal
vertex covers of3, all of cardinality 3, ardw, z, y}, {v, x, u}, and{v, z, y}. But once one
removes the joinfv, z}, G’ has minimal vertex covefsv, y, z} and{w, y, x, u} of different
cardinalities, and is therefore not unmixed.

Theorem 6.8(Structure theorem for unmixed trgesSuppose that\ is an unmixed tree
with more than one facet such thatA) = r. ThenA can be written as

A= (F1,...,F)U(G1,...,Gy)
with the following properties

(i) F1,..., F, are all the leaves od;
(i) {G1,....Gs}N{F1,..., F} =0;
(iv) IfafacetH € Ais not aleafthen it does not contain a free vertex

Proof. If we prove (i), then parts (ii)—(iv) will follow from (i), Corollarie§.4 and6.3.
We prove part (i) by induction on the number of facgwsf A. If ¢ > 1, theng >3 (if A
is a tree of two facets, both facets must be leaves by Lethiand since is connected,
we can get minimal vertex covers of cardinalities one and two, which meanA teatot

unmixed).

So the base case for induction is when= 3. In this case, lef; and F» be the two
disjoint leaves ofA, and letG be the third facet. SincA is connected and unmixed;;
cannot be a leaf (because the leaves are pairwise disjoin€}; $0a joint for bothF; and
F> and this settles the cage= 3.

For the general case, suppose fBas a joint of A. By Corollary6.5, G is not a leaf. By
Corollary5.2and Propositior6.6, if we removeG, the forestA’ = A\(G) is unmixed and
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a(A") = r. By the induction hypothesis,
A =(F1,...,F)U(G1,...,Gy), (6)

where conditions (i)—(iv) are satisfied. It is easy to see from condition (iv) tikaisifa leaf
of A, then it will still be a leaf ofA” (because it has a free vertex).

Our goal is to show that the converse is true, that is, to showRhat ., F, are all the
leaves ofA.

We have the following presentation fAr

A= (Fi,...,F)U(G1,...,G)U(G). (7

There are two cases to consider.

Casel: G is the only joint ofA.

Suppose, without loss of generality, that for soeén, ..., F._1 are leaves ofA and
F,,..., F,. are not leaves oA. RemoverFy, ..., F,_1 from A to obtain the forest

A' = (F,,...,F)U(Gy,...,Gy)U(G).

By Lemma4.1, A” has at least two leaves. Neither one@f, . .., G, could be a leaf,
because neither one of them has a free vertex. To see this, note that by the induction
hypothesis o\’ and part (iv) of the theorengy, ..., G, do not have free vertices i,
and hence they cannot have free verticed.ir\s facets ofA”, they still do not have free
vertices, because &is the only joint ofA,

GiﬂFngﬂFjngorlgigsandléjée—l.

SinceG is a facet ofA” the removal ofFy, ..., F,_1 does not free any vertices of
G1,...,Gg.
This implies that at least one &, . . ., F, is a leaf ofA”. Suppose thak, is a leaf. Then

there exists a facet’ € A” such that
HNF,CG NF,foral He A"\(F,).
SinceF; NF, =@fori =1,...e— 1, it follows that
HNF,CG NF,forall He A\(F,)

and soF, is a leaf ofA, which is a contradiction.

Case2: A has another joing’ distinct fromG.

Consider the presentation Afas in (7). As {F1, ..., F,} is a maximal independent set
of facets inA, it cannot contairG’ (Corollary6.5). Therefore

G €{Gy,...,Gy).

We show that, say; is a leaf ofA.
Consider the two unmixed forests

A = A\(G) andA” = A\(G').
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We already know from before thd, is a leaf ofA’. From the fact thatFy, ..., F,} is a
maximal independent set of facetsAfi and Corollaryé.4 and the induction hypothesis, it
follows thatF; is also a leaf of\”.

So, by the definition of a leaf, there is a facet, €&y in A’, such that

HNFLCGiNnFforall H # G, F1 (8)
and a facetGo € A” such that
HNF CGonFiforal H# G, Fy. 9)

The possible scenarios are the following.

@) G1# G orGy #G.
Supposes, # G'. Inthis caseG; € A”, and so because )

GiNFLCGyxNFy
which with (8) and @) implies that
HNFLCGoNnFyforall H # Fy
henceF; is a leaf ofA. The caseé5G, # G is identical.
(b) G1 = G'andG, = G.

In this case, Statement8)(and @), respectively, translate into

HNF, CG NFyforall H # G, F1,
HNFLCGNnFy foral H # G, Fy.

(10)
If Fyis not a leaf ofA, it follows from (10) that
GNF1L <G NFy,
G NFLZGNF (11)
HNFLC(GNG)YNF; forall H #G,G, Fy.
By (11) there exist

x e (GNF)\G' and ye (G NF)\G. (12)

Claim. There is a minimal vertex cover f&\ (G, G’, F1) that avoids all the vertices in G
G’ and Fy.

Proof of Claim. We first show that there is no facet&f (G, G’, F1) that has all its vertices
in G U G’. Suppose thatl is such a facet:

H=HNG)UHNG (13)



318 S. Faridi / Journal of Combinatorial Theory, Series A 109 (2005) 299-329

and consider the tree
A =(G,G',F, H).

By Lemmad4.1, A1 must have two leaves. Note thidtcannot be a leaf, since because of
(13) it has no free vertices. Ify is a leaf, then it cannot haw@or G’ as its joint, since that
violates the first two conditions irL(), and saH must be its joint. But then it follows that

GNFLC HN F.

This implies thatr € H (wherexis defined in 12)), which along with the third part ofi(l),
results inx € G’, which is a contradiction.

SoG andG’ are the two leaves dk;. ConsiderG first. If G’ is a joint forG, it follows
that

FINGCGNGCG

which contradicts1).
If His a joint of G, then

FINGCHNG

which implies thatt € H, but this again means € G’ (because ofX1)), which is a
contradiction. Sy is the only possible joint foG.

With an identical argument fat’, it follows that F is a joint for bothG andG’ in Aq,
and therefore

HNGCFNGandHNG € F1NG
which along with (3) implies that
HCF,

which is impossible sinckl and F; are both facets oA.

So we have shown that every facetdbther thanG, G’ and F1, has at least one vertex
outsideG andG’ (and therefore by the third condition i), outsideFy).

For each faceltl of A\(G, G’, F1), pick a vertex € H that avoids all three face6, G’
and F1. The set of these vertices is a vertex coverAqtG, G’, F1), and so it has a subset
that is a minimal vertex cover. This proves the clain.

Now letA be a minimal vertex cover fok\ (G, G’, F1) that avoids all the vertices iB,
G’ andFy. SinceA\(G, G’, F1) hasr — 1 independent facetfd| >r — 1. NowA U {x, y}
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is a minimal vertex cover foA with more tharr vertices, which contradicts the fact thiat
is unmixed with vertex covering number equaltfNote thatx andy do not belong to any
facet of A\ (G, G', F1), as this would contradict the third condition itl)).

So both cases 1 and 2 lead to contradictions, therefore &l ,of ., F,, must be leaves
of A, which proves the theorem.[]

Example 6.9. The simplicial complexA shown below is an unmixed tree, satisfying prop-
erties (i)—(iv) of Theoren6.8.

F2

Gl

F1

It is important to notice that Theoref8 does not suggest that every facet in an un-
mixed tree is either a leaf or a joint (See Exam@l&0 below). On the other hand, two
different leaves in an unmixed tree may share a joint, as is the case with the unmixed graph
(xy, yz, zu). For these reasons the two numheasdsin the statement of Theore8that
count the number of leaves and non-leaves, respectively, do not seem to have any particular
relationship to one another.

Example 6.10. The following simplicial complex, which is the facet complex of
the ideal

(xu, uvew, zvew, ef w, efg, fgy)

is an unmixed tree with a facé¢, f, w} that is neither a leaf nor a joint. In fact, the two
leaves{x, u} and{z, v, e, w} share a joinfu, v, e, w}.

Above, for simplicity, ann-dimensional facet (simplex) is drawn as a shaded polygon
with n + 1 vertices. The picture in 3D is as follows:



320 S. Faridi / Journal of Combinatorial Theory, Series A 109 (2005) 299-329

u

7. Grafting simplicial complexes

All that we proved in the previous section about unmixed trees can be put into one
definition—namely that of a grafted tree. In fact, the method of grafting works as an effective
way to build an unmixed simplicial complex from any given simplicial complex by adding
new leaves (Theoreih6). It turns out that a grafted simplicial complex is Cohen—Macaulay
(Theorem8.2).

Definition 7.1 (Grafting). A simplicial complexA is agrafting of the simplicial complex
A = (Gy, ..., Gy) with the simplicesFy, ..., F. (or we say thai\ is grafted if

AZ(Fl,...,Fr>U<G1,...,GS>

with the following properties:

(i) V(A) S V(F)U...UV(F);
@iy Fi,..., F, are all the leaves of;
(i) {G1,...,Gs)N{F1,..., F} =10
(iv) Fori # j, FiNF; =0,
(v) If G;isajoint ofA, thenA\(G;) is also grafted.

Note that a simplicial complex that consists of only one facet or several pairwise disjoint
facets is indeed grafted, as it could be considered as a grafting of the empty simplicial
complex. It is easy to check that conditions (i)—(v) above are satisfied in this case.

Itis also clear that the union of two or more grafted simplicial complexes is itself grafted.

Remark 7.2. Condition (v) above implies that i is a leaf of a grafted\, then all the
facetsH that intersecE have embedded intersections; in other wordg i F andH' N F
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are both non-empty, then
HNFCHNForHNFCHNF.
This implies that there is a chain of intersections
HNF2>---D2HNF,

whereH;, ..., H, are all the facets oA that intersecF.

Remark 7.3. Condition (v) in Definition7.1can be replaced byA\ (G;) is grafted for all
i=1,...,s". Thisis because even @; is not a joint ofA, A\(G;) satisfies properties (i),
(i) and (iv), and it satisfies (ii) and (v) because of Remark and soA\ (G;) is grafted.

Remark 7.4 (A grafting of a tree is also a trge If A" in Definition7.1is a tree, them\ is

also a tree. To see this, consider any subcollechéf A. If A” containsF; for somei,

then by Remark3.2and7.3 F; is a leaf ofA”. If A” contains neither of th&;, then itis a
subcollection of the tred’, which implies that\” has a leaf.

The “suspension” of a graph, as defined\il], is also a grafting of that graph.

Example 7.5. The tree(Fy, F2, G1, G2) that appeared in Examp&e9 above is a grafting
of the tree(G1, G) with the leavesF; and F». In fact, there may be more than one way
to graft a given simplicial complex. For example, some possible ways of gratiingGo)
are shown below:

'F2 E F1 F2 F3
A” : ~ : AHI : F4 :
F1

Theorem 7.6(A grafted simplicial complex is unmixed_et
A= (F1,...,F)U(G1,...,Gy)

be a grafting of the simplicial compl€Gy, ..., G,) with the simplices, ..., F,. Then
Ais unmixedanda(A) = r.

Proof. If (G1,..., Gy) is the empty simplicial complex, the claim is immediate, so we
assume that it is non-empty.

We argue by induction on the number of facqtef A. The first case to consider is
g = 3. In this caseA must have at least two leaves, as if there were only oneHgafe.
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if A= (F1) U (G1, G2), then by Condition (i) of Definitiory.1 we would haveG1 C Fi
andG, C Fi, which is impossible. S = (Fy, F2) U (G1), whereGy C F1 U F» and
F1N F; = (. Itis now easy to see thatis unmixed witha(A) = 2.

Supposeé\ hasg > 3 facets, and le; be a joint of the leaty. By Part (v) of Definition
7.1A" = A\(G,) is also grafted, and therefore by the induction hypothesis unmixed with
a(A) =r.

Let A be a minimal vertex cover &k. We already know thatA| >r asFi, ..., F, arer
independent facets @. Now suppose thatd| > r . SinceA is also a vertex cover fak’,
it has a subset’ that is a minimal vertex cover af’ with |A’| = r. SinceA’ is a proper
subset ofA, it is not a vertex cover foA, and therefored’ cannot contain a vertex .
So A’ contains a free vertexof Fy (all non-free vertices of; are shared witlGG1). Now
A must contain a vertexof G1; sayy € G1 N F2 (y ¢ Fi, since in that case would be
redundant). So

A=A"Ul{yl.

On the other hand’ must also contain a vertex &b, sayz. So F» contributes two vertices
y andzto A; note that neither one gfor z could be a free vertex, as in that case the free
one would be redundant.

Now suppose thaf; is a joint of F». RemoveG, from A to get

A" = A\(G2).

SoAhas a subset”, |A”| = r, that is a minimal vertex cover fax”. But asA already has
exactly one vertex in each @, F3, ..., F,, the only way to getd” from A is to remove
one ofy or z, this means that:

A" =A\[y} or A" =A\(z}).

In either cased” contains a vertex ofi2, which implies thatA” is a minimal vertex cover
for A; a contradiction. [J

Example7.5 demonstrates Theorem6: A = (G1, G2) is a non-unmixed tree, which
gets grafted with some leaves to make the unmixed thée8” andA” .

One could graft any simplicial complex, even a badly non-unmixed non-tree.

Example 7.7. Let A’ be the non-unmixed non-tree in Exampl&. We could graftA” with
three new leaves

{x, y, v} {u, w}, {z, e}.

Theresulting picture below is unmixed, and moreover, as we prove later, Cohen—Macaulay.
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Inthe case of atree Theore®8and7.6put together with Corollarg.3produce a much
stronger statement:

Corollary 7.8 (A tree is unmixed if and only if graftedSuppose the simplicial complAx
is a tree ThenA is unmixed if and only iAA is grafted

Grafted simplicial complexes behave well under localization; in other words, the local-
ization of a grafted simplicial complex is also grafted. In the case of trees this follows
directly from Corollary7.8 Lemmas4.3and4.5. But the statement holds more generally.

Proposition 7.9(Localization of a grafted simplicial complex is graffed.et I = F(A)
whereA is a grafted simplicial complex with vertices labeled . . ., x,,. Suppose that k is
afield and p is a prime ideal of the polynomial rikf1, . . ., x,1. Thend #(1,,) is a grafted
simplicial complex
Proof. With notation as in Definitior7.1, let

A= (F,...,F)U(G1,...,Gs).

If A has only one facet, the statement of the theorem follows immediately, so assume that
A has two or more facets.

As in the proof of Lemma.5, it is enough to assume thats generated by a subset of
{xl’ R xl‘l}a SO

P = Xig, ...y Xiy).
Following Discussiort.2, let
Ay, =0x(,) =(F{,...,F)U(G,....G)),
wherefori =1,...,randj =1,...,s

Fi/ =FN{x, ..., x,} andG/j =G;Nn {Xig, oo, Xy}

andF/ q,..., F/,G, 4, ..., Gy each contain at least one of
F|,...,F,GY,....G,. (14)
We now rename the facets 4f, as follows. For =1,...,¢, let
H; = F.
Foreachi =+ 1,...,r, F/ contains one of the facets appearing 14)( But as by

definition F; N F; = @ forall j # i, there must be some<u for which G’j C F!. For this
particularj, set

H; =G’
This choice of is well-defined: if there were somg< « distinct fromj such tha’G/f c

F/, then it would follow from Remark’.2 that eitherG’j - G’f or G’f C G’j, which
contradicts the fact that botti’; andG’, are facets ofA,,.



324 S. Faridi / Journal of Combinatorial Theory, Series A 109 (2005) 299-329

We now represem, as
Ap = (H1,...,H)U(Eq, ..., Ey),

whereEy, ..., E, represent all the other facets&f, that were not labeled by son# .
Our goal is to show thak , is a grafting of the simplicial complej&y, .. ., E,) with the
simplicesHy, ..., H,.
Itis clear by our construction that the facéfs, . . ., H, are pairwise disjoint. To see this,
notice that for each pair of distinct numbéisi> <r, there is a pair of distinct numbers
Jj1, jo<r such that

Hyy C F; C FjandH;, C F, C Fj,
andasF;, N Fj, =¥,
Hy N H;, = 0.
So Condition (iv) of Definitior7.1is satisfied.

On the other hand, by Theoren6 A is unmixed, so by Lemma.3 A, is unmixed with
o(Ap) = a(A) = r. We now apply Lemm&.1to A, to deduce that

V(Ap) =V(H) U---UV(H,),

which implies Condition (i) in Definitior7. 1 This also implies thaky, . . ., E, cannot have
free vertices, and hence cannot be leaves pf

Condition (jii) is satisfied by the construction Af,.

We need to show thally, ..., H, are all leaves ofA,. If A, = (Hy,..., H,) then
A, is grafted by definition. So suppose thfg} has a connected componefitwith two
or more facets. As\" is connected, it must contain some of the, and asV(A,) =
V(H1) U---U V(H,), A" must also contain some of thig;. So we can without loss of
generality assume that

A =(Hy,...,H)U(E1,...,Ef)

for some Ke<r and 1< f <.
We now show that, for examplél; is a leaf forA’. There are two cases to consider:
Casel: H; = F] for somei such that ¥ <.
SinceA’ is connected, it has some facets that interégcsuppose thak; ..., E; are
all the facets oA\ (H) such that

HiNE; #0

forz=1,...,1.
Foreachy =1, ..., [ suppose that

Ej. =G, .
The above paragraph translates into

F/NG, #0
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and hence
FiNGp, #9

forz=1,...,1.
From Remark/.2it follows that there is some total order of inclusion on the non-empty
setsF; N G,,,; we assume that

FiNGu 2FNGy, 22 FiNGy,,
which after intersecting each set with, .. ., x;, } turns into
F/ NG, 2FNG,,2---2FNG,,
which is equivalent to

HlmEjlQH]_QEJ'ZQ-“QH]_QE]'I.

It follows that H; is a leaf of A’, and in addition, Condition (v) of Definitioi.1 is
satisfied.

Case2: Hy = G/j for somej such that X j <u.

In this case for somet < i <r,

H, = G; - Fi/'
Exactly as above, lek,, ..., Ej, be all the facets o'\ (H1) such thatd, N E;, # 9,
andlete; =G, forz=1,... 1.
As all the setsF; N G, are non-empty, we follow the exact argument as above to obtain
the chain
F/NG,, 2FNG,,2--2FNG,,.

As G'; € F{, we can intersect all these sets wiif) to obtain

/ I / / / /
G,nG,, 260G, 2---2G, NG,
which is equivalent to

HlmEjlQH]_QEJ'ZQ-“QH]_QE]'I.

It follows that H1 is a leaf ofA’, and also Condition (v) of Definitiod. 1is satisfied. [

8. Grafted simplicial complexes are Cohen—Macaulay

We are now ready to show that the facet ideal of a grafted simplicial complex has a
Cohen—-Macaulay quotient. Besides revealing a wealth of square-free monomial ideals with
Cohen—Macaulay quotients, this result implies that all unmixed trees are Cohen—Macaulay.



326 S. Faridi / Journal of Combinatorial Theory, Series A 109 (2005) 299-329

Let A be a grafted simplicial complex over a vertex ¥et {x1, ..., x,,}. By Definition
7.1, A will have the form

A= (Fi,...,F)U(Gy,..., Gy,

wherea(A) = r andFy, ..., F, are the leaves aA.
Let

R(A) = k[-xls IR ] -xn]/f(A)s
wherek is a field and let
m = (xlv"'sxn)

be the irrelevant maximal ideal.
From Discussior2.13we know that

dim R(A) =n —r.

In order to show thaR(A) is Cohen—Macaulay, it is enough to show that there is a
homogeneous regular sequenceninof lengthn — r.
Itis interesting to observe how the previous sentence follows also from Propd&@ion
if mis any other maximal ideal & (A), from the proof of Lemmd.5and Propositior7.9
we see that ifp = (x1, ..., x.) is the ideal generated by all ef that belong tam, then
I, = I, is the facet ideal of a grafted simplicial complex over the vertexsgt . ., x.}.
So one can writez = p + g whereqis a prime ideal ok[x.41, ..., x,]. It follows that

R(A)m = klx1, ..., xe]p/lp O k[xet1, ..., xn]q-

AS k[Xeq1, .. ., xnlq is clearly Cohen—Macaulay, by Theorem 5.5.9\f, it is enough
to show thatk[xs, ..., x.1,/I, is Cohen—Macaulay in order to conclude thia¢A),, is
Cohen—Macaulay. But this is again the case of localizing at the irrelevant ideal.

Now suppose that for eack< r,

i

F = yixi...xui,
wherey; is a free vertex of the leaf;, andy;, xi, e xf,l_ e V. We wish to show that
_ 1 _ 1 T T 15
V1= XD ooy VL= Xps oo ey Vr = XLs oo ey Vr — Xy, (15)

is a regular sequence iR(A). This follows from the process of “polarization” that we
describe below.

Proposition 8.1(Froberg[Fr] ). Let R be the ringk[xa, ..., x,]/(M1, ..., M,), where

My, ..., M, are monomials in the variables,, ..., x,, and k is a field Then there is an
N >n,and asetof square-free monomials, . .., N, inthe polynomial ringk[x1, ..., xn1,
such that

R:R//(flv"'afN—n)a
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whereR" = k[x1, ..., xn1/(N1,..., Ny)andfi, ..., fy—n is aregular sequence of forms
of degree one iR’.

For the purpose of our argument, it is instructive to see an outline of the proof of this
proposition.

Sketch of proof. Suppose, without loss of generality, thatf; for 1<i <s, andxy fM;
fors < j<q.
Fori=1,...,s we set

M =

1

M;
X1
so that we can write
I=(Mn,...,My) = (1M}, ..., x1M}, Myi1, ..., My).
Define
Il = (xn+1M17 ) xn—‘,—lMés MS+la RN Mq) g k[xls cees X, xn+l]~
ThenR = R1/(x,+1 — x1) Where

R1 =k[x1,...,xn, Xpt11/11.

It is then shown that, 1 — x1 is a non-zerodivisor irRy. If I is square-free, we are
done. Otherwise one applies the same procedufe ¢ontinually until the ideal becomes
square-free. [

What we would like to show is that Sequend®)(polarizes the ring

1
S =kly1, ..,y /Gy By Ey)

intothe ringR(A), whereEy, ..., E; are monomials corresponding tothe facgis. . ., Gy,
where each vertex belonging i has been replaced by the free vergexin other words if

1 1
J= (=X, VL= Xy s Ve = XL, s Ve — Xy ),

we wish to show that
S =TRA)/J.

It will then follow from the proof of Propositio8.1 (as detailed iriFr] as well as ifVi2])
that Sequencelf) is a regular sequence R(A).

Intuitively our claim is straightforward to see. The only problem that may arise is if after
applying Sequencdlb) to S we end up with a permutation of the verticesofTo prevent
this from happening, we use the subtle structure of a grafted simplicial complex (Remark
7.2) that the facets intersecting a leaf do so in an embedded (and therefore ordered) manner.
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In other words, suppose for the legf, the facetsH{, e, H(jl_ are all the facets oA\ (F;)
that intersect;, with the ordering

H{NF,C---CH NF,. (16)
So in Sequencelg), we order
yi—xi,...,yi—x,ii (17)

such that if for anye andf, x, € H thenx{ € Hj ;.
We now use induction on the number of facetsAoflf we remove a joint, say;1 €
Up(F1), we obtain a grafted simplicial complex

A" = A\(Gy)

over the same set of vertices, . . ., x,,, with 2(A") = «(A) (Lemma5.1). Therefore if
R(A') = k[x1, ..., x,1/F(A)

then
dim R(A) = dim R(A).

Moreover,A" hasFi, ..., F, as leaves. So by the induction hypothesis, Sequetfe (
polarizes the ring

S/ = k[yla ey yr]/(y;1+ls IR ] y;l"Jrl, E21 L] ES)
into R(A"), or in other words,
S’ =R/ J.

The induction hypothesis has ensured that after applying SequEs)ae ¢, all facets
of A’ are restored to their original positions and labeling. Now it all reduces to showing that
during this polarization procesgy turns intoG.

This is clear, as for every G1 N F; has its place in the ordered sequent®),(and so
if |G1 N F;| = h;, then the firsty; applications of Sequencé?) restoreG1 N F; before
moving on to facets that have larger intersections WithAs G1 has disjoint intersections
with F1, ..., F,, once Sequencd () has been applied for dll G is restored to its proper
position.

We have shown that:

Theorem 8.2(Grafted simplicial complexes are Cohen—MacalilayetA be a grafted sim-
plicial complex over a set of vertices labeled . . ., x,, and let k be a fieldThenR(A) =
k[x1,...,x,]1/F(A) is Cohen—Macaulay

Theorem8.2 along with Propositior2.12and Corollary7.8 imply that for a tree being
unmixed and being Cohen—Macaulay are equivalent conditions.



S. Faridi / Journal of Combinatorial Theory, Series A 109 (2005) 299-329 329

Corollary 8.3 (A tree is Cohen—Macaulay if and only if unmiyedet A be a tree over a
set of vertices, ..., x,, and let k be a fieldThen the quotient ring[x1, ..., x,1/F(A)
is Cohen—Macaulay if and only X is unmixed
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